| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxrmptf | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimgtxrmptf.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimgtxrmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| smfpimgtxrmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimgtxrmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| smfpimgtxrmptf.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimgtxrmptf.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimgtxrmptf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5201 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | nfdm 5904 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 3 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
| 5 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝐿 | |
| 6 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
| 7 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 8 | 1, 7 | nffv 6850 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 9 | 5, 6, 8 | nfbr 5149 | . . . . 5 ⊢ Ⅎ𝑥 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 10 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
| 11 | 10 | breq2d 5114 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
| 12 | 2, 3, 4, 9, 11 | cbvrabw 3438 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)}) |
| 14 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 15 | smfpimgtxrmptf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 16 | smfpimgtxrmptf.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 17 | eqid 2729 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 18 | smfpimgtxrmptf.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
| 19 | 14, 15, 16, 17, 18 | smfpimgtxr 46751 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 20 | 13, 19 | eqeltrd 2828 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 21 | smfpimgtxrmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 22 | smfpimgtxrmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 23 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 24 | smfpimgtxrmptf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 25 | 21, 22, 23, 24 | dmmptdf2 45200 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 26 | 2, 22 | rabeqf 3437 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 29 | 22 | fvmpt2f 6951 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 30 | 28, 24, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 31 | 30 | breq2d 5114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < 𝐵)) |
| 32 | 21, 31 | rabbida 3429 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) |
| 33 | eqidd 2730 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) | |
| 34 | 27, 32, 33 | 3eqtrrd 2769 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 35 | 25 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 36 | 35 | oveq2d 7385 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 37 | 34, 36 | eleq12d 2822 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 38 | 20, 37 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 {crab 3402 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ℝ*cxr 11183 < clt 11184 ↾t crest 17359 SAlgcsalg 46279 SMblFncsmblfn 46666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-ioo 13286 df-ico 13288 df-fl 13730 df-rest 17361 df-salg 46280 df-smblfn 46667 |
| This theorem is referenced by: smfpimgtxrmpt 46756 smfdmmblpimne 46808 |
| Copyright terms: Public domain | W3C validator |