Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxrmptf Structured version   Visualization version   GIF version

Theorem smfpimgtxrmptf 46799
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
smfpimgtxrmptf.x 𝑥𝜑
smfpimgtxrmptf.1 𝑥𝐴
smfpimgtxrmptf.s (𝜑𝑆 ∈ SAlg)
smfpimgtxrmptf.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimgtxrmptf.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimgtxrmptf.l (𝜑𝐿 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxrmptf (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Distinct variable group:   𝑥,𝐿
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimgtxrmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5250 . . . . . 6 𝑥(𝑥𝐴𝐵)
21nfdm 5962 . . . . 5 𝑥dom (𝑥𝐴𝐵)
3 nfcv 2905 . . . . 5 𝑦dom (𝑥𝐴𝐵)
4 nfv 1914 . . . . 5 𝑦 𝐿 < ((𝑥𝐴𝐵)‘𝑥)
5 nfcv 2905 . . . . . 6 𝑥𝐿
6 nfcv 2905 . . . . . 6 𝑥 <
7 nfcv 2905 . . . . . . 7 𝑥𝑦
81, 7nffv 6916 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
95, 6, 8nfbr 5190 . . . . 5 𝑥 𝐿 < ((𝑥𝐴𝐵)‘𝑦)
10 fveq2 6906 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
1110breq2d 5155 . . . . 5 (𝑥 = 𝑦 → (𝐿 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝐿 < ((𝑥𝐴𝐵)‘𝑦)))
122, 3, 4, 9, 11cbvrabw 3473 . . . 4 {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑦)}
1312a1i 11 . . 3 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑦)})
14 nfcv 2905 . . . 4 𝑦(𝑥𝐴𝐵)
15 smfpimgtxrmptf.s . . . 4 (𝜑𝑆 ∈ SAlg)
16 smfpimgtxrmptf.f . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
17 eqid 2737 . . . 4 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
18 smfpimgtxrmptf.l . . . 4 (𝜑𝐿 ∈ ℝ*)
1914, 15, 16, 17, 18smfpimgtxr 46795 . . 3 (𝜑 → {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑦)} ∈ (𝑆t dom (𝑥𝐴𝐵)))
2013, 19eqeltrd 2841 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵)))
21 smfpimgtxrmptf.x . . . . . 6 𝑥𝜑
22 smfpimgtxrmptf.1 . . . . . 6 𝑥𝐴
23 eqid 2737 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
24 smfpimgtxrmptf.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
2521, 22, 23, 24dmmptdf2 45238 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
262, 22rabeqf 3472 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
2725, 26syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
28 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
2922fvmpt2f 7017 . . . . . . 7 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3028, 24, 29syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3130breq2d 5155 . . . . 5 ((𝜑𝑥𝐴) → (𝐿 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝐿 < 𝐵))
3221, 31rabbida 3463 . . . 4 (𝜑 → {𝑥𝐴𝐿 < ((𝑥𝐴𝐵)‘𝑥)} = {𝑥𝐴𝐿 < 𝐵})
33 eqidd 2738 . . . 4 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥𝐴𝐿 < 𝐵})
3427, 32, 333eqtrrd 2782 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)})
3525eqcomd 2743 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
3635oveq2d 7447 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
3734, 36eleq12d 2835 . 2 (𝜑 → ({𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ 𝐿 < ((𝑥𝐴𝐵)‘𝑥)} ∈ (𝑆t dom (𝑥𝐴𝐵))))
3820, 37mpbird 257 1 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  {crab 3436   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  *cxr 11294   < clt 11295  t crest 17465  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-fl 13832  df-rest 17467  df-salg 46324  df-smblfn 46711
This theorem is referenced by:  smfpimgtxrmpt  46800  smfdmmblpimne  46852
  Copyright terms: Public domain W3C validator