| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxrmptf | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimgtxrmptf.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimgtxrmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| smfpimgtxrmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimgtxrmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| smfpimgtxrmptf.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimgtxrmptf.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimgtxrmptf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5230 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | nfdm 5942 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 3 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑦 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
| 5 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥𝐿 | |
| 6 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
| 7 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 8 | 1, 7 | nffv 6896 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 9 | 5, 6, 8 | nfbr 5170 | . . . . 5 ⊢ Ⅎ𝑥 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 10 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
| 11 | 10 | breq2d 5135 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
| 12 | 2, 3, 4, 9, 11 | cbvrabw 3456 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)}) |
| 14 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 15 | smfpimgtxrmptf.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 16 | smfpimgtxrmptf.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 17 | eqid 2734 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 18 | smfpimgtxrmptf.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
| 19 | 14, 15, 16, 17, 18 | smfpimgtxr 46767 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 20 | 13, 19 | eqeltrd 2833 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 21 | smfpimgtxrmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 22 | smfpimgtxrmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 23 | eqid 2734 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 24 | smfpimgtxrmptf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 25 | 21, 22, 23, 24 | dmmptdf2 45210 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 26 | 2, 22 | rabeqf 3455 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 29 | 22 | fvmpt2f 6997 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 30 | 28, 24, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 31 | 30 | breq2d 5135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < 𝐵)) |
| 32 | 21, 31 | rabbida 3446 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) |
| 33 | eqidd 2735 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) | |
| 34 | 27, 32, 33 | 3eqtrrd 2774 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
| 35 | 25 | eqcomd 2740 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 36 | 35 | oveq2d 7429 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 37 | 34, 36 | eleq12d 2827 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
| 38 | 20, 37 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 {crab 3419 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 ℝ*cxr 11276 < clt 11277 ↾t crest 17437 SAlgcsalg 46295 SMblFncsmblfn 46682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-ioo 13373 df-ico 13375 df-fl 13814 df-rest 17439 df-salg 46296 df-smblfn 46683 |
| This theorem is referenced by: smfpimgtxrmpt 46772 smfdmmblpimne 46824 |
| Copyright terms: Public domain | W3C validator |