Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinfmpt Structured version   Visualization version   GIF version

Theorem smfinfmpt 46810
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinfmpt.n 𝑛𝜑
smfinfmpt.x 𝑥𝜑
smfinfmpt.y 𝑦𝜑
smfinfmpt.m (𝜑𝑀 ∈ ℤ)
smfinfmpt.z 𝑍 = (ℤ𝑀)
smfinfmpt.s (𝜑𝑆 ∈ SAlg)
smfinfmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfinfmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfinfmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
smfinfmpt.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfinfmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfinfmpt
StepHypRef Expression
1 smfinfmpt.g . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 smfinfmpt.x . . . 4 𝑥𝜑
3 smfinfmpt.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
4 smfinfmpt.n . . . . . . . 8 𝑛𝜑
5 eqidd 2731 . . . . . . . . . . 11 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
6 smfinfmpt.f . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
75, 6fvmpt2d 6983 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
87dmeqd 5871 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
9 nfcv 2892 . . . . . . . . . . . 12 𝑥𝑍
109nfcri 2884 . . . . . . . . . . 11 𝑥 𝑛𝑍
112, 10nfan 1899 . . . . . . . . . 10 𝑥(𝜑𝑛𝑍)
12 eqid 2730 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
13 smfinfmpt.b . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
14133expa 1118 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
1511, 12, 14dmmptdf 45211 . . . . . . . . 9 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
168, 15eqtr2d 2766 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
174, 16iineq2d 4981 . . . . . . 7 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
182, 17rabeqd 3437 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
19 smfinfmpt.y . . . . . . . . 9 𝑦𝜑
20 nfv 1914 . . . . . . . . 9 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2119, 20nfan 1899 . . . . . . . 8 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
22 nfii1 4995 . . . . . . . . . . 11 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
2322nfcri 2884 . . . . . . . . . 10 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
244, 23nfan 1899 . . . . . . . . 9 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
25 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
26 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
27 eliinid 45098 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
2827adantll 714 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
298, 15eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3029adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
3128, 30eleqtrd 2831 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
327fveq1d 6862 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
33323adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
34 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
35 fvmpt4 45225 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3634, 13, 35syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3733, 36eqtr2d 2766 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
3837breq2d 5121 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → (𝑦𝐵𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
3925, 26, 31, 38syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝑦𝐵𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
4024, 39ralbida 3249 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
4121, 40rexbid 3252 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
422, 41rabbida 3435 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
4318, 42eqtrd 2765 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
443, 43eqtrid 2777 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
45 nfcv 2892 . . . . . . . . . . . 12 𝑛
46 nfra1 3262 . . . . . . . . . . . 12 𝑛𝑛𝑍 𝑦𝐵
4745, 46nfrexw 3289 . . . . . . . . . . 11 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵
48 nfii1 4995 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝐴
4947, 48nfrabw 3446 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
503, 49nfcxfr 2890 . . . . . . . . 9 𝑛𝐷
5150nfcri 2884 . . . . . . . 8 𝑛 𝑥𝐷
524, 51nfan 1899 . . . . . . 7 𝑛(𝜑𝑥𝐷)
53 simpll 766 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
54 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
55 rabidim1 3431 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} → 𝑥 𝑛𝑍 𝐴)
5655, 3eleq2s 2847 . . . . . . . . . 10 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
57 eliinid 45098 . . . . . . . . . 10 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
5856, 57sylan 580 . . . . . . . . 9 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
5958adantll 714 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
6053, 54, 59, 37syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
6152, 60mpteq2da 5201 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
6261rneqd 5904 . . . . 5 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
6362infeq1d 9435 . . . 4 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
642, 44, 63mpteq12da 5192 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
651, 64eqtrid 2777 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
66 nfmpt1 5208 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
67 nfmpt1 5208 . . . 4 𝑥(𝑥𝐴𝐵)
689, 67nfmpt 5207 . . 3 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
69 smfinfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
70 smfinfmpt.z . . 3 𝑍 = (ℤ𝑀)
71 smfinfmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
724, 6fmptd2f 45222 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
73 eqid 2730 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)}
74 eqid 2730 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
7566, 68, 69, 70, 71, 72, 73, 74smfinf 46809 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
7665, 75eqeltrd 2829 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3045  wrex 3054  {crab 3408   ciin 4958   class class class wbr 5109  cmpt 5190  dom cdm 5640  ran crn 5641  cfv 6513  infcinf 9398  cr 11073   < clt 11214  cle 11215  cz 12535  cuz 12799  SAlgcsalg 46299  SMblFncsmblfn 46686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cc 10394  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-s2 14820  df-s3 14821  df-s4 14822  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-rest 17391  df-topgen 17412  df-top 22787  df-bases 22839  df-salg 46300  df-salgen 46304  df-smblfn 46687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator