Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinfmpt Structured version   Visualization version   GIF version

Theorem smfinfmpt 45994
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinfmpt.n 𝑛𝜑
smfinfmpt.x 𝑥𝜑
smfinfmpt.y 𝑦𝜑
smfinfmpt.m (𝜑𝑀 ∈ ℤ)
smfinfmpt.z 𝑍 = (ℤ𝑀)
smfinfmpt.s (𝜑𝑆 ∈ SAlg)
smfinfmpt.b ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
smfinfmpt.f ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfinfmpt.d 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
smfinfmpt.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
Assertion
Ref Expression
smfinfmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐴(𝑛)   𝐵(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)   𝑉(𝑥,𝑦,𝑛)

Proof of Theorem smfinfmpt
StepHypRef Expression
1 smfinfmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )))
3 smfinfmpt.x . . . . 5 𝑥𝜑
4 smfinfmpt.d . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
54a1i 11 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
6 smfinfmpt.n . . . . . . . . 9 𝑛𝜑
7 eqidd 2732 . . . . . . . . . . . 12 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵)))
8 smfinfmpt.f . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
97, 8fvmpt2d 7011 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = (𝑥𝐴𝐵))
109dmeqd 5905 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = dom (𝑥𝐴𝐵))
11 nfcv 2902 . . . . . . . . . . . . 13 𝑥𝑛
12 nfcv 2902 . . . . . . . . . . . . 13 𝑥𝑍
1311, 12nfel 2916 . . . . . . . . . . . 12 𝑥 𝑛𝑍
143, 13nfan 1901 . . . . . . . . . . 11 𝑥(𝜑𝑛𝑍)
15 eqid 2731 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
16 smfinfmpt.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
18 smfinfmpt.b . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵𝑉)
19183expa 1117 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
2014, 17, 19, 8smffmpt 45980 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
2120fvmptelcdm 7114 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2214, 15, 21dmmptdf 44382 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom (𝑥𝐴𝐵) = 𝐴)
23 eqidd 2732 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝐴 = 𝐴)
2410, 22, 233eqtrrd 2776 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐴 = dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
256, 24iineq2d 5020 . . . . . . . 8 (𝜑 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
26 nfcv 2902 . . . . . . . . 9 𝑥 𝑛𝑍 𝐴
27 nfmpt1 5256 . . . . . . . . . . . . 13 𝑥(𝑥𝐴𝐵)
2812, 27nfmpt 5255 . . . . . . . . . . . 12 𝑥(𝑛𝑍 ↦ (𝑥𝐴𝐵))
2928, 11nffv 6901 . . . . . . . . . . 11 𝑥((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3029nfdm 5950 . . . . . . . . . 10 𝑥dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3112, 30nfiin 5028 . . . . . . . . 9 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3226, 31rabeqf 3465 . . . . . . . 8 ( 𝑛𝑍 𝐴 = 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
3325, 32syl 17 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
34 smfinfmpt.y . . . . . . . . . 10 𝑦𝜑
35 nfv 1916 . . . . . . . . . 10 𝑦 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3634, 35nfan 1901 . . . . . . . . 9 𝑦(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
37 nfcv 2902 . . . . . . . . . . . 12 𝑛𝑥
38 nfii1 5032 . . . . . . . . . . . 12 𝑛 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
3937, 38nfel 2916 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)
406, 39nfan 1901 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
41 simpll 764 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝜑)
42 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
43 eliinid 44262 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
4443adantll 711 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛))
4524eqcomd 2737 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
4645adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) = 𝐴)
4744, 46eleqtrd 2834 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → 𝑥𝐴)
489fveq1d 6893 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
49483adant3 1131 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
50 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥𝐴) → 𝑥𝐴)
5115fvmpt2 7009 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5250, 18, 51syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
5349, 52eqtr2d 2772 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
5453breq2d 5160 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥𝐴) → (𝑦𝐵𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
5541, 42, 47, 54syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) ∧ 𝑛𝑍) → (𝑦𝐵𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
5640, 55ralbida 3266 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
5736, 56rexbid 3270 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
583, 57rabbida 3457 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
5933, 58eqtrd 2771 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
605, 59eqtrd 2771 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
613, 60alrimi 2205 . . . 4 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)})
62 nfcv 2902 . . . . . . . . . . . . . 14 𝑛
63 nfra1 3280 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝑦𝐵
6462, 63nfrexw 3309 . . . . . . . . . . . . 13 𝑛𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵
65 nfii1 5032 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝐴
6664, 65nfrabw 3467 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵}
674, 66nfcxfr 2900 . . . . . . . . . . 11 𝑛𝐷
6837, 67nfel 2916 . . . . . . . . . 10 𝑛 𝑥𝐷
696, 68nfan 1901 . . . . . . . . 9 𝑛(𝜑𝑥𝐷)
70 simpll 764 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝜑)
71 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑛𝑍)
724eleq2i 2824 . . . . . . . . . . . . . . 15 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
7372biimpi 215 . . . . . . . . . . . . . 14 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵})
74 rabidim1 3452 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 𝑛𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵} → 𝑥 𝑛𝑍 𝐴)
7573, 74syl 17 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝐴)
7675adantr 480 . . . . . . . . . . . 12 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 𝐴)
77 simpr 484 . . . . . . . . . . . 12 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
78 eliinid 44262 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 𝐴𝑛𝑍) → 𝑥𝐴)
7976, 77, 78syl2anc 583 . . . . . . . . . . 11 ((𝑥𝐷𝑛𝑍) → 𝑥𝐴)
8079adantll 711 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥𝐴)
8153idi 1 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥𝐴) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
8270, 71, 80, 81syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝐵 = (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥))
8369, 82mpteq2da 5246 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑛𝑍𝐵) = (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
8483rneqd 5937 . . . . . . 7 ((𝜑𝑥𝐷) → ran (𝑛𝑍𝐵) = ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)))
8584infeq1d 9478 . . . . . 6 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
8685ex 412 . . . . 5 (𝜑 → (𝑥𝐷 → inf(ran (𝑛𝑍𝐵), ℝ, < ) = inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
873, 86ralrimi 3253 . . . 4 (𝜑 → ∀𝑥𝐷 inf(ran (𝑛𝑍𝐵), ℝ, < ) = inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
88 mpteq12f 5236 . . . 4 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ∧ ∀𝑥𝐷 inf(ran (𝑛𝑍𝐵), ℝ, < ) = inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
8961, 87, 88syl2anc 583 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
902, 89eqtrd 2771 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )))
91 nfmpt1 5256 . . 3 𝑛(𝑛𝑍 ↦ (𝑥𝐴𝐵))
92 smfinfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
93 smfinfmpt.z . . 3 𝑍 = (ℤ𝑀)
94 eqid 2731 . . . 4 (𝑛𝑍 ↦ (𝑥𝐴𝐵)) = (𝑛𝑍 ↦ (𝑥𝐴𝐵))
956, 8, 94fmptdf 7118 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
96 eqid 2731 . . 3 {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)}
97 eqid 2731 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < ))
9891, 28, 92, 93, 16, 95, 96, 97smfinf 45993 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom ((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛𝑍 ↦ (((𝑛𝑍 ↦ (𝑥𝐴𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
9990, 98eqeltrd 2832 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wnf 1784  wcel 2105  wral 3060  wrex 3069  {crab 3431   ciin 4998   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cfv 6543  infcinf 9442  cr 11115   < clt 11255  cle 11256  cz 12565  cuz 12829  SAlgcsalg 45483  SMblFncsmblfn 45870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-ac2 10464  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-acn 9943  df-ac 10117  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553  df-s2 14806  df-s3 14807  df-s4 14808  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-rest 17375  df-topgen 17396  df-top 22716  df-bases 22769  df-salg 45484  df-salgen 45488  df-smblfn 45871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator