Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmpt Structured version   Visualization version   GIF version

Theorem funcnvmpt 31049
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnvmpt (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem funcnvmpt
StepHypRef Expression
1 relcnv 6022 . . . 4 Rel 𝐹
2 nfcv 2905 . . . . 5 𝑦𝐹
3 funcnvmpt.2 . . . . . 6 𝑥𝐹
43nfcnv 5800 . . . . 5 𝑥𝐹
52, 4dffun6f 6476 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑦∃*𝑥 𝑦𝐹𝑥))
61, 5mpbiran 707 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑦𝐹𝑥)
7 vex 3441 . . . . . 6 𝑦 ∈ V
8 vex 3441 . . . . . 6 𝑥 ∈ V
97, 8brcnv 5804 . . . . 5 (𝑦𝐹𝑥𝑥𝐹𝑦)
109mobii 2546 . . . 4 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
1110albii 1819 . . 3 (∀𝑦∃*𝑥 𝑦𝐹𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
126, 11bitri 275 . 2 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
13 funcnvmpt.0 . . . . 5 𝑥𝜑
14 funcnvmpt.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
1514funmpt2 6502 . . . . . . . . 9 Fun 𝐹
16 funbrfv2b 6859 . . . . . . . . 9 (Fun 𝐹 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦)))
1715, 16ax-mp 5 . . . . . . . 8 (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦))
1814dmmpt 6158 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
19 funcnvmpt.4 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019elexd 3457 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
2120ex 414 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴𝐵 ∈ V))
2213, 21ralrimi 3237 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
23 funcnvmpt.1 . . . . . . . . . . . . 13 𝑥𝐴
2423rabid2f 3325 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
2522, 24sylibr 233 . . . . . . . . . . 11 (𝜑𝐴 = {𝑥𝐴𝐵 ∈ V})
2618, 25eqtr4id 2795 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
2726eleq2d 2822 . . . . . . . . 9 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2827anbi1d 631 . . . . . . . 8 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
2917, 28bitrid 283 . . . . . . 7 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3029bian1d 30854 . . . . . 6 (𝜑 → ((𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
31 simpr 486 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
3214fveq1i 6805 . . . . . . . . . . 11 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3323fvmpt2f 6908 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3432, 33eqtrid 2788 . . . . . . . . . 10 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
3531, 19, 34syl2anc 585 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
3635eqeq2d 2747 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = 𝐵))
37 eqcom 2743 . . . . . . . . 9 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
3827biimpar 479 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐹)
39 funbrfvb 6856 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4015, 38, 39sylancr 588 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4137, 40bitr3id 285 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4236, 41bitr3d 281 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑥𝐹𝑦))
4342pm5.32da 580 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑥𝐹𝑦)))
4430, 43, 293bitr4rd 312 . . . . 5 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐵)))
4513, 44mobid 2548 . . . 4 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
46 df-rmo 3285 . . . 4 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵))
4745, 46bitr4di 289 . . 3 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥𝐴 𝑦 = 𝐵))
4847albidv 1921 . 2 (𝜑 → (∀𝑦∃*𝑥 𝑥𝐹𝑦 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
4912, 48bitrid 283 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  wnf 1783  wcel 2104  ∃*wmo 2536  wnfc 2885  wral 3062  ∃*wrmo 3283  {crab 3284  Vcvv 3437   class class class wbr 5081  cmpt 5164  ccnv 5599  dom cdm 5600  Rel wrel 5605  Fun wfun 6452  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466
This theorem is referenced by:  funcnv5mpt  31050
  Copyright terms: Public domain W3C validator