Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmpt Structured version   Visualization version   GIF version

Theorem funcnvmpt 32159
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnvmpt (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem funcnvmpt
StepHypRef Expression
1 relcnv 6102 . . . 4 Rel 𝐹
2 nfcv 2901 . . . . 5 𝑦𝐹
3 funcnvmpt.2 . . . . . 6 𝑥𝐹
43nfcnv 5877 . . . . 5 𝑥𝐹
52, 4dffun6f 6560 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑦∃*𝑥 𝑦𝐹𝑥))
61, 5mpbiran 705 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑦𝐹𝑥)
7 vex 3476 . . . . . 6 𝑦 ∈ V
8 vex 3476 . . . . . 6 𝑥 ∈ V
97, 8brcnv 5881 . . . . 5 (𝑦𝐹𝑥𝑥𝐹𝑦)
109mobii 2540 . . . 4 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
1110albii 1819 . . 3 (∀𝑦∃*𝑥 𝑦𝐹𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
126, 11bitri 274 . 2 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
13 funcnvmpt.0 . . . . 5 𝑥𝜑
14 funcnvmpt.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
1514funmpt2 6586 . . . . . . . . 9 Fun 𝐹
16 funbrfv2b 6948 . . . . . . . . 9 (Fun 𝐹 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦)))
1715, 16ax-mp 5 . . . . . . . 8 (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦))
1814dmmpt 6238 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
19 funcnvmpt.4 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019elexd 3493 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
2120ex 411 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴𝐵 ∈ V))
2213, 21ralrimi 3252 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
23 funcnvmpt.1 . . . . . . . . . . . . 13 𝑥𝐴
2423rabid2f 3461 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
2522, 24sylibr 233 . . . . . . . . . . 11 (𝜑𝐴 = {𝑥𝐴𝐵 ∈ V})
2618, 25eqtr4id 2789 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
2726eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2827anbi1d 628 . . . . . . . 8 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
2917, 28bitrid 282 . . . . . . 7 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3029bian1d 31967 . . . . . 6 (𝜑 → ((𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
31 simpr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
3214fveq1i 6891 . . . . . . . . . . 11 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3323fvmpt2f 6998 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3432, 33eqtrid 2782 . . . . . . . . . 10 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
3531, 19, 34syl2anc 582 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
3635eqeq2d 2741 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = 𝐵))
37 eqcom 2737 . . . . . . . . 9 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
3827biimpar 476 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐹)
39 funbrfvb 6945 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4015, 38, 39sylancr 585 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4137, 40bitr3id 284 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4236, 41bitr3d 280 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑥𝐹𝑦))
4342pm5.32da 577 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑥𝐹𝑦)))
4430, 43, 293bitr4rd 311 . . . . 5 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐵)))
4513, 44mobid 2542 . . . 4 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
46 df-rmo 3374 . . . 4 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵))
4745, 46bitr4di 288 . . 3 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥𝐴 𝑦 = 𝐵))
4847albidv 1921 . 2 (𝜑 → (∀𝑦∃*𝑥 𝑥𝐹𝑦 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
4912, 48bitrid 282 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537   = wceq 1539  wnf 1783  wcel 2104  ∃*wmo 2530  wnfc 2881  wral 3059  ∃*wrmo 3373  {crab 3430  Vcvv 3472   class class class wbr 5147  cmpt 5230  ccnv 5674  dom cdm 5675  Rel wrel 5680  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  funcnv5mpt  32160
  Copyright terms: Public domain W3C validator