Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmpt Structured version   Visualization version   GIF version

Theorem funcnvmpt 30430
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnvmpt (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem funcnvmpt
StepHypRef Expression
1 relcnv 5934 . . . 4 Rel 𝐹
2 nfcv 2955 . . . . 5 𝑦𝐹
3 funcnvmpt.2 . . . . . 6 𝑥𝐹
43nfcnv 5713 . . . . 5 𝑥𝐹
52, 4dffun6f 6338 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑦∃*𝑥 𝑦𝐹𝑥))
61, 5mpbiran 708 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑦𝐹𝑥)
7 vex 3444 . . . . . 6 𝑦 ∈ V
8 vex 3444 . . . . . 6 𝑥 ∈ V
97, 8brcnv 5717 . . . . 5 (𝑦𝐹𝑥𝑥𝐹𝑦)
109mobii 2606 . . . 4 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
1110albii 1821 . . 3 (∀𝑦∃*𝑥 𝑦𝐹𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
126, 11bitri 278 . 2 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
13 funcnvmpt.0 . . . . 5 𝑥𝜑
14 funcnvmpt.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
1514funmpt2 6363 . . . . . . . . 9 Fun 𝐹
16 funbrfv2b 6698 . . . . . . . . 9 (Fun 𝐹 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦)))
1715, 16ax-mp 5 . . . . . . . 8 (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦))
1814dmmpt 6061 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
19 funcnvmpt.4 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019elexd 3461 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
2120ex 416 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴𝐵 ∈ V))
2213, 21ralrimi 3180 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
23 funcnvmpt.1 . . . . . . . . . . . . 13 𝑥𝐴
2423rabid2f 3335 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
2522, 24sylibr 237 . . . . . . . . . . 11 (𝜑𝐴 = {𝑥𝐴𝐵 ∈ V})
2618, 25eqtr4id 2852 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
2726eleq2d 2875 . . . . . . . . 9 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2827anbi1d 632 . . . . . . . 8 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
2917, 28syl5bb 286 . . . . . . 7 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3029bian1d 30230 . . . . . 6 (𝜑 → ((𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
31 simpr 488 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
3214fveq1i 6646 . . . . . . . . . . 11 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3323fvmpt2f 6746 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3432, 33syl5eq 2845 . . . . . . . . . 10 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
3531, 19, 34syl2anc 587 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
3635eqeq2d 2809 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = 𝐵))
37 eqcom 2805 . . . . . . . . 9 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
3827biimpar 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐹)
39 funbrfvb 6695 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4015, 38, 39sylancr 590 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4137, 40bitr3id 288 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4236, 41bitr3d 284 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑥𝐹𝑦))
4342pm5.32da 582 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑥𝐹𝑦)))
4430, 43, 293bitr4rd 315 . . . . 5 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐵)))
4513, 44mobid 2609 . . . 4 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
46 df-rmo 3114 . . . 4 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵))
4745, 46syl6bbr 292 . . 3 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥𝐴 𝑦 = 𝐵))
4847albidv 1921 . 2 (𝜑 → (∀𝑦∃*𝑥 𝑥𝐹𝑦 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
4912, 48syl5bb 286 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wnf 1785  wcel 2111  ∃*wmo 2596  wnfc 2936  wral 3106  ∃*wrmo 3109  {crab 3110  Vcvv 3441   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  Rel wrel 5524  Fun wfun 6318  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by:  funcnv5mpt  30431
  Copyright terms: Public domain W3C validator