![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdff | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
dmmptdff.x | ⊢ Ⅎ𝑥𝜑 |
dmmptdff.1 | ⊢ Ⅎ𝑥𝐵 |
dmmptdff.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptdff.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptdff | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdff.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt 6262 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
3 | dmmptdff.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | dmmptdff.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
5 | 4 | elexd 3502 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
6 | 3, 5 | ralrimia 3256 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
7 | dmmptdff.1 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 7 | rabid2f 3466 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
9 | 6, 8 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
10 | 2, 9 | eqtr4id 2794 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 {crab 3433 Vcvv 3478 ↦ cmpt 5231 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: dmmptdf 45167 dmmpt1 45214 adddmmbl 46789 muldmmbl 46791 fsupdm2 46799 finfdm2 46803 |
Copyright terms: Public domain | W3C validator |