Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptdf2 Structured version   Visualization version   GIF version

Theorem dmmptdf2 45195
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
dmmptdf2.x 𝑥𝜑
dmmptdf2.b 𝑥𝐵
dmmptdf2.a 𝐴 = (𝑥𝐵𝐶)
dmmptdf2.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmptdf2 (𝜑 → dom 𝐴 = 𝐵)

Proof of Theorem dmmptdf2
StepHypRef Expression
1 dmmptdf2.a . . 3 𝐴 = (𝑥𝐵𝐶)
21dmmpt 6240 . 2 dom 𝐴 = {𝑥𝐵𝐶 ∈ V}
3 dmmptdf2.x . . . 4 𝑥𝜑
4 dmmptdf2.c . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝑉)
54elexd 3487 . . . 4 ((𝜑𝑥𝐵) → 𝐶 ∈ V)
63, 5ralrimia 3244 . . 3 (𝜑 → ∀𝑥𝐵 𝐶 ∈ V)
7 dmmptdf2.b . . . 4 𝑥𝐵
87rabid2f 3451 . . 3 (𝐵 = {𝑥𝐵𝐶 ∈ V} ↔ ∀𝑥𝐵 𝐶 ∈ V)
96, 8sylibr 234 . 2 (𝜑𝐵 = {𝑥𝐵𝐶 ∈ V})
102, 9eqtr4id 2788 1 (𝜑 → dom 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2882  wral 3050  {crab 3419  Vcvv 3463  cmpt 5205  dom cdm 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by:  smfpimltxrmptf  46730  smfpimgtxrmptf  46756
  Copyright terms: Public domain W3C validator