Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relwf Structured version   Visualization version   GIF version

Theorem relwf 44941
Description: A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.)
Assertion
Ref Expression
relwf (Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))

Proof of Theorem relwf
StepHypRef Expression
1 dmwf 44939 . . 3 (𝑅 (𝑅1 “ On) → dom 𝑅 (𝑅1 “ On))
2 rnwf 44940 . . 3 (𝑅 (𝑅1 “ On) → ran 𝑅 (𝑅1 “ On))
31, 2jca 511 . 2 (𝑅 (𝑅1 “ On) → (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)))
4 xpwf 44938 . . 3 ((dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)) → (dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On))
5 relssdmrn 6221 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
6 sswf 9723 . . . . 5 (((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) → 𝑅 (𝑅1 “ On))
75, 6sylan2 593 . . . 4 (((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) ∧ Rel 𝑅) → 𝑅 (𝑅1 “ On))
87expcom 413 . . 3 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) → 𝑅 (𝑅1 “ On)))
94, 8syl5 34 . 2 (Rel 𝑅 → ((dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)) → 𝑅 (𝑅1 “ On)))
103, 9impbid2 226 1 (Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3905   cuni 4861   × cxp 5621  dom cdm 5623  ran crn 5624  cima 5626  Rel wrel 5628  Oncon0 6311  𝑅1cr1 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-r1 9679  df-rank 9680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator