| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relwf | Structured version Visualization version GIF version | ||
| Description: A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| relwf | ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmwf 44938 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → dom 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 2 | rnwf 44939 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → ran 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On))) |
| 4 | xpwf 44937 | . . 3 ⊢ ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → (dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On)) | |
| 5 | relssdmrn 6257 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 6 | sswf 9820 | . . . . 5 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) → 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ Rel 𝑅) → 𝑅 ∈ ∪ (𝑅1 “ On)) |
| 8 | 7 | expcom 413 | . . 3 ⊢ (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) → 𝑅 ∈ ∪ (𝑅1 “ On))) |
| 9 | 4, 8 | syl5 34 | . 2 ⊢ (Rel 𝑅 → ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → 𝑅 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 × cxp 5652 dom cdm 5654 ran crn 5655 “ cima 5657 Rel wrel 5659 Oncon0 6352 𝑅1cr1 9774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-r1 9776 df-rank 9777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |