|   | Mathbox for Eric Schmidt | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relwf | Structured version Visualization version GIF version | ||
| Description: A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| relwf | ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmwf 44982 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → dom 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 2 | rnwf 44983 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → ran 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On))) | 
| 4 | xpwf 44981 | . . 3 ⊢ ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → (dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On)) | |
| 5 | relssdmrn 6288 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 6 | sswf 9848 | . . . . 5 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) → 𝑅 ∈ ∪ (𝑅1 “ On)) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ Rel 𝑅) → 𝑅 ∈ ∪ (𝑅1 “ On)) | 
| 8 | 7 | expcom 413 | . . 3 ⊢ (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) → 𝑅 ∈ ∪ (𝑅1 “ On))) | 
| 9 | 4, 8 | syl5 34 | . 2 ⊢ (Rel 𝑅 → ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → 𝑅 ∈ ∪ (𝑅1 “ On))) | 
| 10 | 3, 9 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 × cxp 5683 dom cdm 5685 ran crn 5686 “ cima 5688 Rel wrel 5690 Oncon0 6384 𝑅1cr1 9802 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |