![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relwf | Structured version Visualization version GIF version |
Description: A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.) |
Ref | Expression |
---|---|
relwf | ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmwf 44939 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → dom 𝑅 ∈ ∪ (𝑅1 “ On)) | |
2 | rnwf 44940 | . . 3 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → ran 𝑅 ∈ ∪ (𝑅1 “ On)) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝑅 ∈ ∪ (𝑅1 “ On) → (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On))) |
4 | xpwf 44938 | . . 3 ⊢ ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → (dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On)) | |
5 | relssdmrn 6289 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
6 | sswf 9845 | . . . . 5 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) → 𝑅 ∈ ∪ (𝑅1 “ On)) | |
7 | 5, 6 | sylan2 593 | . . . 4 ⊢ (((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) ∧ Rel 𝑅) → 𝑅 ∈ ∪ (𝑅1 “ On)) |
8 | 7 | expcom 413 | . . 3 ⊢ (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∈ ∪ (𝑅1 “ On) → 𝑅 ∈ ∪ (𝑅1 “ On))) |
9 | 4, 8 | syl5 34 | . 2 ⊢ (Rel 𝑅 → ((dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)) → 𝑅 ∈ ∪ (𝑅1 “ On))) |
10 | 3, 9 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 × cxp 5686 dom cdm 5688 ran crn 5689 “ cima 5691 Rel wrel 5693 Oncon0 6385 𝑅1cr1 9799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-r1 9801 df-rank 9802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |