Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relwf Structured version   Visualization version   GIF version

Theorem relwf 44941
Description: A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.)
Assertion
Ref Expression
relwf (Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))

Proof of Theorem relwf
StepHypRef Expression
1 dmwf 44939 . . 3 (𝑅 (𝑅1 “ On) → dom 𝑅 (𝑅1 “ On))
2 rnwf 44940 . . 3 (𝑅 (𝑅1 “ On) → ran 𝑅 (𝑅1 “ On))
31, 2jca 511 . 2 (𝑅 (𝑅1 “ On) → (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)))
4 xpwf 44938 . . 3 ((dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)) → (dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On))
5 relssdmrn 6268 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
6 sswf 9830 . . . . 5 (((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) → 𝑅 (𝑅1 “ On))
75, 6sylan2 593 . . . 4 (((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) ∧ Rel 𝑅) → 𝑅 (𝑅1 “ On))
87expcom 413 . . 3 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∈ (𝑅1 “ On) → 𝑅 (𝑅1 “ On)))
94, 8syl5 34 . 2 (Rel 𝑅 → ((dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On)) → 𝑅 (𝑅1 “ On)))
103, 9impbid2 226 1 (Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wss 3931   cuni 4887   × cxp 5663  dom cdm 5665  ran crn 5666  cima 5668  Rel wrel 5670  Oncon0 6363  𝑅1cr1 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-r1 9786  df-rank 9787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator