MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Visualization version   GIF version

Theorem dchrisum0flb 26756
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.a (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
dchrisum0flb (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flb
Dummy variables 𝑘 𝑦 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6819 . . . . 5 (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴))
21eleq1d 2821 . . . 4 (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈ ℕ))
32ifbid 4495 . . 3 (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘𝐴) ∈ ℕ, 1, 0))
4 fveq2 6819 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
53, 4breq12d 5102 . 2 (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
6 dchrisum0flb.a . . 3 (𝜑𝐴 ∈ ℕ)
7 oveq2 7337 . . . . . 6 (𝑘 = 1 → (1...𝑘) = (1...1))
87raleqdv 3309 . . . . 5 (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
98imbi2d 340 . . . 4 (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
10 oveq2 7337 . . . . . 6 (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖))
1110raleqdv 3309 . . . . 5 (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1211imbi2d 340 . . . 4 (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
13 oveq2 7337 . . . . . 6 (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1)))
1413raleqdv 3309 . . . . 5 (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1514imbi2d 340 . . . 4 (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
16 oveq2 7337 . . . . . 6 (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴))
1716raleqdv 3309 . . . . 5 (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1817imbi2d 340 . . . 4 (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
19 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
21 rpvmasum.a . . . . . 6 (𝜑𝑁 ∈ ℕ)
22 rpvmasum2.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum2.d . . . . . 6 𝐷 = (Base‘𝐺)
24 rpvmasum2.1 . . . . . 6 1 = (0g𝐺)
25 dchrisum0f.f . . . . . 6 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
26 dchrisum0f.x . . . . . 6 (𝜑𝑋𝐷)
27 dchrisum0flb.r . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
28 2prm 16486 . . . . . . 7 2 ∈ ℙ
2928a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℙ)
30 0nn0 12341 . . . . . . 7 0 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3219, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31dchrisum0flblem1 26754 . . . . 5 (𝜑 → if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)))
33 elfz1eq 13360 . . . . . . . . . . . 12 (𝑦 ∈ (1...1) → 𝑦 = 1)
34 2nn0 12343 . . . . . . . . . . . . 13 2 ∈ ℕ0
3534numexp0 16866 . . . . . . . . . . . 12 (2↑0) = 1
3633, 35eqtr4di 2794 . . . . . . . . . . 11 (𝑦 ∈ (1...1) → 𝑦 = (2↑0))
3736fveq2d 6823 . . . . . . . . . 10 (𝑦 ∈ (1...1) → (√‘𝑦) = (√‘(2↑0)))
3837eleq1d 2821 . . . . . . . . 9 (𝑦 ∈ (1...1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(2↑0)) ∈ ℕ))
3938ifbid 4495 . . . . . . . 8 (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1, 0))
4036fveq2d 6823 . . . . . . . 8 (𝑦 ∈ (1...1) → (𝐹𝑦) = (𝐹‘(2↑0)))
4139, 40breq12d 5102 . . . . . . 7 (𝑦 ∈ (1...1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))))
4241biimprcd 249 . . . . . 6 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
4342ralrimiv 3138 . . . . 5 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
4432, 43syl 17 . . . 4 (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
45 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
46 nnuz 12714 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
4745, 46eleqtrdi 2847 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
4847adantrr 714 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → 𝑖 ∈ (ℤ‘1))
49 eluzp1p1 12703 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
5048, 49syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
51 df-2 12129 . . . . . . . . . . . . . 14 2 = (1 + 1)
5251fveq2i 6822 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
5350, 52eleqtrrdi 2848 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘2))
54 exprmfct 16498 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5553, 54syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5621ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ)
5726ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋𝐷)
5827ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ)
5953adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈ (ℤ‘2))
60 simprl 768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ)
61 simprr 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1))
62 simplrr 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
63 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ)
6463nnzd 12518 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ)
65 fzval3 13549 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
6664, 65syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1)))
6766raleqdv 3309 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
6862, 67mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
6919, 20, 56, 22, 23, 24, 25, 57, 58, 59, 60, 61, 68dchrisum0flblem2 26755 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7055, 69rexlimddv 3154 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
71 ovex 7362 . . . . . . . . . . 11 (𝑖 + 1) ∈ V
72 fveq2 6819 . . . . . . . . . . . . . 14 (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1)))
7372eleq1d 2821 . . . . . . . . . . . . 13 (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝑖 + 1)) ∈ ℕ))
7473ifbid 4495 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0))
75 fveq2 6819 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → (𝐹𝑦) = (𝐹‘(𝑖 + 1)))
7674, 75breq12d 5102 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1))))
7771, 76ralsn 4628 . . . . . . . . . 10 (∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7870, 77sylibr 233 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
7978expr 457 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8079ancld 551 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
81 fzsuc 13396 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8247, 81syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8382raleqdv 3309 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
84 ralunb 4137 . . . . . . . 8 (∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8583, 84bitrdi 286 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8680, 85sylibrd 258 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8786expcom 414 . . . . 5 (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8887a2d 29 . . . 4 (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
899, 12, 15, 18, 44, 88nnind 12084 . . 3 (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
906, 89mpcom 38 . 2 (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
916, 46eleqtrdi 2847 . . 3 (𝜑𝐴 ∈ (ℤ‘1))
92 eluzfz2 13357 . . 3 (𝐴 ∈ (ℤ‘1) → 𝐴 ∈ (1...𝐴))
9391, 92syl 17 . 2 (𝜑𝐴 ∈ (1...𝐴))
945, 90, 93rspcdva 3571 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {crab 3403  cun 3895  ifcif 4472  {csn 4572   class class class wbr 5089  cmpt 5172  wf 6469  cfv 6473  (class class class)co 7329  cr 10963  0cc0 10964  1c1 10965   + caddc 10967  cle 11103  cn 12066  2c2 12121  0cn0 12326  cz 12412  cuz 12675  ...cfz 13332  ..^cfzo 13475  cexp 13875  csqrt 15035  Σcsu 15488  cdvds 16054  cprime 16465  Basecbs 17001  0gc0g 17239  ℤRHomczrh 20799  ℤ/nczn 20802  DChrcdchr 26478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-disj 5055  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-omul 8364  df-er 8561  df-ec 8563  df-qs 8567  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-acn 9791  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-ioc 13177  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-fl 13605  df-mod 13683  df-seq 13815  df-exp 13876  df-fac 14081  df-bc 14110  df-hash 14138  df-shft 14869  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-limsup 15271  df-clim 15288  df-rlim 15289  df-sum 15489  df-ef 15868  df-sin 15870  df-cos 15871  df-pi 15873  df-dvds 16055  df-gcd 16293  df-prm 16466  df-numer 16528  df-denom 16529  df-pc 16627  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-qus 17309  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mhm 18519  df-submnd 18520  df-grp 18668  df-minusg 18669  df-sbg 18670  df-mulg 18789  df-subg 18840  df-nsg 18841  df-eqg 18842  df-ghm 18920  df-cntz 19011  df-od 19224  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-dvr 20012  df-rnghom 20046  df-drng 20087  df-subrg 20119  df-lmod 20223  df-lss 20292  df-lsp 20332  df-sra 20532  df-rgmod 20533  df-lidl 20534  df-rsp 20535  df-2idl 20601  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-fbas 20692  df-fg 20693  df-cnfld 20696  df-zring 20769  df-zrh 20803  df-zn 20806  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-nei 22347  df-lp 22385  df-perf 22386  df-cn 22476  df-cnp 22477  df-haus 22564  df-tx 22811  df-hmeo 23004  df-fil 23095  df-fm 23187  df-flim 23188  df-flf 23189  df-xms 23571  df-ms 23572  df-tms 23573  df-cncf 24139  df-limc 25128  df-dv 25129  df-log 25810  df-cxp 25811  df-dchr 26479
This theorem is referenced by:  dchrisum0fno1  26757
  Copyright terms: Public domain W3C validator