MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Visualization version   GIF version

Theorem dchrisum0flb 25756
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.a (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
dchrisum0flb (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flb
Dummy variables 𝑘 𝑦 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6530 . . . . 5 (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴))
21eleq1d 2865 . . . 4 (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈ ℕ))
32ifbid 4397 . . 3 (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘𝐴) ∈ ℕ, 1, 0))
4 fveq2 6530 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
53, 4breq12d 4969 . 2 (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
6 dchrisum0flb.a . . 3 (𝜑𝐴 ∈ ℕ)
7 oveq2 7015 . . . . . 6 (𝑘 = 1 → (1...𝑘) = (1...1))
87raleqdv 3372 . . . . 5 (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
98imbi2d 342 . . . 4 (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
10 oveq2 7015 . . . . . 6 (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖))
1110raleqdv 3372 . . . . 5 (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1211imbi2d 342 . . . 4 (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
13 oveq2 7015 . . . . . 6 (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1)))
1413raleqdv 3372 . . . . 5 (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1514imbi2d 342 . . . 4 (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
16 oveq2 7015 . . . . . 6 (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴))
1716raleqdv 3372 . . . . 5 (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1817imbi2d 342 . . . 4 (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
19 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
21 rpvmasum.a . . . . . 6 (𝜑𝑁 ∈ ℕ)
22 rpvmasum2.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum2.d . . . . . 6 𝐷 = (Base‘𝐺)
24 rpvmasum2.1 . . . . . 6 1 = (0g𝐺)
25 dchrisum0f.f . . . . . 6 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
26 dchrisum0f.x . . . . . 6 (𝜑𝑋𝐷)
27 dchrisum0flb.r . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
28 2prm 15853 . . . . . . 7 2 ∈ ℙ
2928a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℙ)
30 0nn0 11749 . . . . . . 7 0 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3219, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31dchrisum0flblem1 25754 . . . . 5 (𝜑 → if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)))
33 elfz1eq 12757 . . . . . . . . . . . 12 (𝑦 ∈ (1...1) → 𝑦 = 1)
34 2nn0 11751 . . . . . . . . . . . . 13 2 ∈ ℕ0
3534numexp0 16229 . . . . . . . . . . . 12 (2↑0) = 1
3633, 35syl6eqr 2847 . . . . . . . . . . 11 (𝑦 ∈ (1...1) → 𝑦 = (2↑0))
3736fveq2d 6534 . . . . . . . . . 10 (𝑦 ∈ (1...1) → (√‘𝑦) = (√‘(2↑0)))
3837eleq1d 2865 . . . . . . . . 9 (𝑦 ∈ (1...1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(2↑0)) ∈ ℕ))
3938ifbid 4397 . . . . . . . 8 (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1, 0))
4036fveq2d 6534 . . . . . . . 8 (𝑦 ∈ (1...1) → (𝐹𝑦) = (𝐹‘(2↑0)))
4139, 40breq12d 4969 . . . . . . 7 (𝑦 ∈ (1...1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))))
4241biimprcd 251 . . . . . 6 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
4342ralrimiv 3146 . . . . 5 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
4432, 43syl 17 . . . 4 (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
45 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
46 nnuz 12119 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
4745, 46syl6eleq 2891 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
4847adantrr 713 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → 𝑖 ∈ (ℤ‘1))
49 eluzp1p1 12108 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
5048, 49syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
51 df-2 11537 . . . . . . . . . . . . . 14 2 = (1 + 1)
5251fveq2i 6533 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
5350, 52syl6eleqr 2892 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘2))
54 exprmfct 15865 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5553, 54syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5621ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ)
5726ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋𝐷)
5827ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ)
5953adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈ (ℤ‘2))
60 simprl 767 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ)
61 simprr 769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1))
62 simplrr 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
63 simplrl 773 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ)
6463nnzd 11924 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ)
65 fzval3 12944 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
6664, 65syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1)))
6766raleqdv 3372 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
6862, 67mpbid 233 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
6919, 20, 56, 22, 23, 24, 25, 57, 58, 59, 60, 61, 68dchrisum0flblem2 25755 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7055, 69rexlimddv 3251 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
71 ovex 7039 . . . . . . . . . . 11 (𝑖 + 1) ∈ V
72 fveq2 6530 . . . . . . . . . . . . . 14 (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1)))
7372eleq1d 2865 . . . . . . . . . . . . 13 (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝑖 + 1)) ∈ ℕ))
7473ifbid 4397 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0))
75 fveq2 6530 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → (𝐹𝑦) = (𝐹‘(𝑖 + 1)))
7674, 75breq12d 4969 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1))))
7771, 76ralsn 4520 . . . . . . . . . 10 (∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7870, 77sylibr 235 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
7978expr 457 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8079ancld 551 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
81 fzsuc 12793 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8247, 81syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8382raleqdv 3372 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
84 ralunb 4083 . . . . . . . 8 (∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8583, 84syl6bb 288 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8680, 85sylibrd 260 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8786expcom 414 . . . . 5 (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8887a2d 29 . . . 4 (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
899, 12, 15, 18, 44, 88nnind 11493 . . 3 (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
906, 89mpcom 38 . 2 (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
916, 46syl6eleq 2891 . . 3 (𝜑𝐴 ∈ (ℤ‘1))
92 eluzfz2 12754 . . 3 (𝐴 ∈ (ℤ‘1) → 𝐴 ∈ (1...𝐴))
9391, 92syl 17 . 2 (𝜑𝐴 ∈ (1...𝐴))
945, 90, 93rspcdva 3560 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  wral 3103  wrex 3104  {crab 3107  cun 3852  ifcif 4375  {csn 4466   class class class wbr 4956  cmpt 5035  wf 6213  cfv 6217  (class class class)co 7007  cr 10371  0cc0 10372  1c1 10373   + caddc 10375  cle 10511  cn 11475  2c2 11529  0cn0 11734  cz 11818  cuz 12082  ...cfz 12731  ..^cfzo 12872  cexp 13267  csqrt 14414  Σcsu 14864  cdvds 15428  cprime 15832  Basecbs 16300  0gc0g 16530  ℤRHomczrh 20317  ℤ/nczn 20320  DChrcdchr 25478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-omul 7949  df-er 8130  df-ec 8132  df-qs 8136  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-acn 9206  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-pi 15247  df-dvds 15429  df-gcd 15665  df-prm 15833  df-numer 15892  df-denom 15893  df-pc 15991  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-qus 16599  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mhm 17762  df-submnd 17763  df-grp 17852  df-minusg 17853  df-sbg 17854  df-mulg 17970  df-subg 18018  df-nsg 18019  df-eqg 18020  df-ghm 18085  df-cntz 18176  df-od 18375  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-cring 18978  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-dvr 19111  df-rnghom 19145  df-drng 19182  df-subrg 19211  df-lmod 19314  df-lss 19382  df-lsp 19422  df-sra 19622  df-rgmod 19623  df-lidl 19624  df-rsp 19625  df-2idl 19682  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-zring 20288  df-zrh 20321  df-zn 20324  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-log 24809  df-cxp 24810  df-dchr 25479
This theorem is referenced by:  dchrisum0fno1  25757
  Copyright terms: Public domain W3C validator