Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . 5
⊢ (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴)) |
2 | 1 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈
ℕ)) |
3 | 2 | ifbid 4482 |
. . 3
⊢ (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) =
if((√‘𝐴) ∈
ℕ, 1, 0)) |
4 | | fveq2 6774 |
. . 3
⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) |
5 | 3, 4 | breq12d 5087 |
. 2
⊢ (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹‘𝐴))) |
6 | | dchrisum0flb.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℕ) |
7 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 1 → (1...𝑘) = (1...1)) |
8 | 7 | raleqdv 3348 |
. . . . 5
⊢ (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦))) |
9 | 8 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦)))) |
10 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖)) |
11 | 10 | raleqdv 3348 |
. . . . 5
⊢ (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
12 | 11 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
13 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1))) |
14 | 13 | raleqdv 3348 |
. . . . 5
⊢ (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
15 | 14 | imbi2d 341 |
. . . 4
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
16 | | oveq2 7283 |
. . . . . 6
⊢ (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴)) |
17 | 16 | raleqdv 3348 |
. . . . 5
⊢ (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
18 | 17 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
19 | | rpvmasum.z |
. . . . . 6
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
20 | | rpvmasum.l |
. . . . . 6
⊢ 𝐿 = (ℤRHom‘𝑍) |
21 | | rpvmasum.a |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
22 | | rpvmasum2.g |
. . . . . 6
⊢ 𝐺 = (DChr‘𝑁) |
23 | | rpvmasum2.d |
. . . . . 6
⊢ 𝐷 = (Base‘𝐺) |
24 | | rpvmasum2.1 |
. . . . . 6
⊢ 1 =
(0g‘𝐺) |
25 | | dchrisum0f.f |
. . . . . 6
⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
26 | | dchrisum0f.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
27 | | dchrisum0flb.r |
. . . . . 6
⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
28 | | 2prm 16397 |
. . . . . . 7
⊢ 2 ∈
ℙ |
29 | 28 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℙ) |
30 | | 0nn0 12248 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
31 | 30 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
32 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31 | dchrisum0flblem1 26656 |
. . . . 5
⊢ (𝜑 →
if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))) |
33 | | elfz1eq 13267 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (1...1) → 𝑦 = 1) |
34 | | 2nn0 12250 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
35 | 34 | numexp0 16777 |
. . . . . . . . . . . 12
⊢
(2↑0) = 1 |
36 | 33, 35 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (1...1) → 𝑦 = (2↑0)) |
37 | 36 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (1...1) →
(√‘𝑦) =
(√‘(2↑0))) |
38 | 37 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 ∈ (1...1) →
((√‘𝑦) ∈
ℕ ↔ (√‘(2↑0)) ∈ ℕ)) |
39 | 38 | ifbid 4482 |
. . . . . . . 8
⊢ (𝑦 ∈ (1...1) →
if((√‘𝑦) ∈
ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1,
0)) |
40 | 36 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑦 ∈ (1...1) → (𝐹‘𝑦) = (𝐹‘(2↑0))) |
41 | 39, 40 | breq12d 5087 |
. . . . . . 7
⊢ (𝑦 ∈ (1...1) →
(if((√‘𝑦)
∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ if((√‘(2↑0)) ∈
ℕ, 1, 0) ≤ (𝐹‘(2↑0)))) |
42 | 41 | biimprcd 249 |
. . . . . 6
⊢
(if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) →
if((√‘𝑦) ∈
ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
43 | 42 | ralrimiv 3102 |
. . . . 5
⊢
(if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) →
∀𝑦 ∈
(1...1)if((√‘𝑦)
∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
44 | 32, 43 | syl 17 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦)) |
45 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
46 | | nnuz 12621 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
47 | 45, 46 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈
(ℤ≥‘1)) |
48 | 47 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → 𝑖 ∈
(ℤ≥‘1)) |
49 | | eluzp1p1 12610 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(ℤ≥‘1) → (𝑖 + 1) ∈ (ℤ≥‘(1
+ 1))) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → (𝑖 + 1) ∈ (ℤ≥‘(1
+ 1))) |
51 | | df-2 12036 |
. . . . . . . . . . . . . 14
⊢ 2 = (1 +
1) |
52 | 51 | fveq2i 6777 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
53 | 50, 52 | eleqtrrdi 2850 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → (𝑖 + 1) ∈
(ℤ≥‘2)) |
54 | | exprmfct 16409 |
. . . . . . . . . . . 12
⊢ ((𝑖 + 1) ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1)) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1)) |
56 | 21 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ) |
57 | 26 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋 ∈ 𝐷) |
58 | 27 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ) |
59 | 53 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈
(ℤ≥‘2)) |
60 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ) |
61 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1)) |
62 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
63 | | simplrl 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ) |
64 | 63 | nnzd 12425 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ) |
65 | | fzval3 13456 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℤ →
(1...𝑖) = (1..^(𝑖 + 1))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1))) |
67 | 66 | raleqdv 3348 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
68 | 62, 67 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
69 | 19, 20, 56, 22, 23, 24, 25, 57, 58, 59, 60, 61, 68 | dchrisum0flblem2 26657 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0)
≤ (𝐹‘(𝑖 + 1))) |
70 | 55, 69 | rexlimddv 3220 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0)
≤ (𝐹‘(𝑖 + 1))) |
71 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (𝑖 + 1) ∈ V |
72 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1))) |
73 | 72 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔
(√‘(𝑖 + 1))
∈ ℕ)) |
74 | 73 | ifbid 4482 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) =
if((√‘(𝑖 + 1))
∈ ℕ, 1, 0)) |
75 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑖 + 1) → (𝐹‘𝑦) = (𝐹‘(𝑖 + 1))) |
76 | 74, 75 | breq12d 5087 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0)
≤ (𝐹‘(𝑖 + 1)))) |
77 | 71, 76 | ralsn 4617 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
{(𝑖 +
1)}if((√‘𝑦)
∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0)
≤ (𝐹‘(𝑖 + 1))) |
78 | 70, 77 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
79 | 78 | expr 457 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
80 | 79 | ancld 551 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
81 | | fzsuc 13303 |
. . . . . . . . . 10
⊢ (𝑖 ∈
(ℤ≥‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)})) |
82 | 47, 81 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)})) |
83 | 82 | raleqdv 3348 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
84 | | ralunb 4125 |
. . . . . . . 8
⊢
(∀𝑦 ∈
((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
85 | 83, 84 | bitrdi 287 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
86 | 80, 85 | sylibrd 258 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
87 | 86 | expcom 414 |
. . . . 5
⊢ (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
88 | 87 | a2d 29 |
. . . 4
⊢ (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)))) |
89 | 9, 12, 15, 18, 44, 88 | nnind 11991 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦))) |
90 | 6, 89 | mpcom 38 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
91 | 6, 46 | eleqtrdi 2849 |
. . 3
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘1)) |
92 | | eluzfz2 13264 |
. . 3
⊢ (𝐴 ∈
(ℤ≥‘1) → 𝐴 ∈ (1...𝐴)) |
93 | 91, 92 | syl 17 |
. 2
⊢ (𝜑 → 𝐴 ∈ (1...𝐴)) |
94 | 5, 90, 93 | rspcdva 3562 |
1
⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤
(𝐹‘𝐴)) |