MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Visualization version   GIF version

Theorem dchrisum0flb 26658
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.a (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
dchrisum0flb (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flb
Dummy variables 𝑘 𝑦 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . 5 (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴))
21eleq1d 2823 . . . 4 (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈ ℕ))
32ifbid 4482 . . 3 (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘𝐴) ∈ ℕ, 1, 0))
4 fveq2 6774 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
53, 4breq12d 5087 . 2 (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
6 dchrisum0flb.a . . 3 (𝜑𝐴 ∈ ℕ)
7 oveq2 7283 . . . . . 6 (𝑘 = 1 → (1...𝑘) = (1...1))
87raleqdv 3348 . . . . 5 (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
98imbi2d 341 . . . 4 (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
10 oveq2 7283 . . . . . 6 (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖))
1110raleqdv 3348 . . . . 5 (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1211imbi2d 341 . . . 4 (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
13 oveq2 7283 . . . . . 6 (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1)))
1413raleqdv 3348 . . . . 5 (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1514imbi2d 341 . . . 4 (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
16 oveq2 7283 . . . . . 6 (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴))
1716raleqdv 3348 . . . . 5 (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1817imbi2d 341 . . . 4 (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
19 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
21 rpvmasum.a . . . . . 6 (𝜑𝑁 ∈ ℕ)
22 rpvmasum2.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum2.d . . . . . 6 𝐷 = (Base‘𝐺)
24 rpvmasum2.1 . . . . . 6 1 = (0g𝐺)
25 dchrisum0f.f . . . . . 6 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
26 dchrisum0f.x . . . . . 6 (𝜑𝑋𝐷)
27 dchrisum0flb.r . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
28 2prm 16397 . . . . . . 7 2 ∈ ℙ
2928a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℙ)
30 0nn0 12248 . . . . . . 7 0 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3219, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31dchrisum0flblem1 26656 . . . . 5 (𝜑 → if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)))
33 elfz1eq 13267 . . . . . . . . . . . 12 (𝑦 ∈ (1...1) → 𝑦 = 1)
34 2nn0 12250 . . . . . . . . . . . . 13 2 ∈ ℕ0
3534numexp0 16777 . . . . . . . . . . . 12 (2↑0) = 1
3633, 35eqtr4di 2796 . . . . . . . . . . 11 (𝑦 ∈ (1...1) → 𝑦 = (2↑0))
3736fveq2d 6778 . . . . . . . . . 10 (𝑦 ∈ (1...1) → (√‘𝑦) = (√‘(2↑0)))
3837eleq1d 2823 . . . . . . . . 9 (𝑦 ∈ (1...1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(2↑0)) ∈ ℕ))
3938ifbid 4482 . . . . . . . 8 (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1, 0))
4036fveq2d 6778 . . . . . . . 8 (𝑦 ∈ (1...1) → (𝐹𝑦) = (𝐹‘(2↑0)))
4139, 40breq12d 5087 . . . . . . 7 (𝑦 ∈ (1...1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))))
4241biimprcd 249 . . . . . 6 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
4342ralrimiv 3102 . . . . 5 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
4432, 43syl 17 . . . 4 (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
45 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
46 nnuz 12621 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
4745, 46eleqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
4847adantrr 714 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → 𝑖 ∈ (ℤ‘1))
49 eluzp1p1 12610 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
5048, 49syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
51 df-2 12036 . . . . . . . . . . . . . 14 2 = (1 + 1)
5251fveq2i 6777 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
5350, 52eleqtrrdi 2850 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘2))
54 exprmfct 16409 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5553, 54syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5621ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ)
5726ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋𝐷)
5827ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ)
5953adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈ (ℤ‘2))
60 simprl 768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ)
61 simprr 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1))
62 simplrr 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
63 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ)
6463nnzd 12425 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ)
65 fzval3 13456 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
6664, 65syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1)))
6766raleqdv 3348 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
6862, 67mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
6919, 20, 56, 22, 23, 24, 25, 57, 58, 59, 60, 61, 68dchrisum0flblem2 26657 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7055, 69rexlimddv 3220 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
71 ovex 7308 . . . . . . . . . . 11 (𝑖 + 1) ∈ V
72 fveq2 6774 . . . . . . . . . . . . . 14 (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1)))
7372eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝑖 + 1)) ∈ ℕ))
7473ifbid 4482 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0))
75 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → (𝐹𝑦) = (𝐹‘(𝑖 + 1)))
7674, 75breq12d 5087 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1))))
7771, 76ralsn 4617 . . . . . . . . . 10 (∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7870, 77sylibr 233 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
7978expr 457 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8079ancld 551 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
81 fzsuc 13303 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8247, 81syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8382raleqdv 3348 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
84 ralunb 4125 . . . . . . . 8 (∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8583, 84bitrdi 287 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8680, 85sylibrd 258 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8786expcom 414 . . . . 5 (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8887a2d 29 . . . 4 (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
899, 12, 15, 18, 44, 88nnind 11991 . . 3 (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
906, 89mpcom 38 . 2 (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
916, 46eleqtrdi 2849 . . 3 (𝜑𝐴 ∈ (ℤ‘1))
92 eluzfz2 13264 . . 3 (𝐴 ∈ (ℤ‘1) → 𝐴 ∈ (1...𝐴))
9391, 92syl 17 . 2 (𝜑𝐴 ∈ (1...𝐴))
945, 90, 93rspcdva 3562 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cun 3885  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  cexp 13782  csqrt 14944  Σcsu 15397  cdvds 15963  cprime 16376  Basecbs 16912  0gc0g 17150  ℤRHomczrh 20701  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-numer 16439  df-denom 16440  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-dchr 26381
This theorem is referenced by:  dchrisum0fno1  26659
  Copyright terms: Public domain W3C validator