MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Visualization version   GIF version

Theorem dchrisum0flb 27569
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.a (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
dchrisum0flb (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flb
Dummy variables 𝑘 𝑦 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴))
21eleq1d 2824 . . . 4 (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈ ℕ))
32ifbid 4554 . . 3 (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘𝐴) ∈ ℕ, 1, 0))
4 fveq2 6907 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
53, 4breq12d 5161 . 2 (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
6 dchrisum0flb.a . . 3 (𝜑𝐴 ∈ ℕ)
7 oveq2 7439 . . . . . 6 (𝑘 = 1 → (1...𝑘) = (1...1))
87raleqdv 3324 . . . . 5 (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
98imbi2d 340 . . . 4 (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
10 oveq2 7439 . . . . . 6 (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖))
1110raleqdv 3324 . . . . 5 (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1211imbi2d 340 . . . 4 (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
13 oveq2 7439 . . . . . 6 (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1)))
1413raleqdv 3324 . . . . 5 (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1514imbi2d 340 . . . 4 (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
16 oveq2 7439 . . . . . 6 (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴))
1716raleqdv 3324 . . . . 5 (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1817imbi2d 340 . . . 4 (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
19 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
21 rpvmasum.a . . . . . 6 (𝜑𝑁 ∈ ℕ)
22 rpvmasum2.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum2.d . . . . . 6 𝐷 = (Base‘𝐺)
24 rpvmasum2.1 . . . . . 6 1 = (0g𝐺)
25 dchrisum0f.f . . . . . 6 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
26 dchrisum0f.x . . . . . 6 (𝜑𝑋𝐷)
27 dchrisum0flb.r . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
28 2prm 16726 . . . . . . 7 2 ∈ ℙ
2928a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℙ)
30 0nn0 12539 . . . . . . 7 0 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3219, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31dchrisum0flblem1 27567 . . . . 5 (𝜑 → if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)))
33 elfz1eq 13572 . . . . . . . . . . . 12 (𝑦 ∈ (1...1) → 𝑦 = 1)
34 2nn0 12541 . . . . . . . . . . . . 13 2 ∈ ℕ0
3534numexp0 17110 . . . . . . . . . . . 12 (2↑0) = 1
3633, 35eqtr4di 2793 . . . . . . . . . . 11 (𝑦 ∈ (1...1) → 𝑦 = (2↑0))
3736fveq2d 6911 . . . . . . . . . 10 (𝑦 ∈ (1...1) → (√‘𝑦) = (√‘(2↑0)))
3837eleq1d 2824 . . . . . . . . 9 (𝑦 ∈ (1...1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(2↑0)) ∈ ℕ))
3938ifbid 4554 . . . . . . . 8 (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1, 0))
4036fveq2d 6911 . . . . . . . 8 (𝑦 ∈ (1...1) → (𝐹𝑦) = (𝐹‘(2↑0)))
4139, 40breq12d 5161 . . . . . . 7 (𝑦 ∈ (1...1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))))
4241biimprcd 250 . . . . . 6 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
4342ralrimiv 3143 . . . . 5 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
4432, 43syl 17 . . . 4 (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
45 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
46 nnuz 12919 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
4745, 46eleqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
4847adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → 𝑖 ∈ (ℤ‘1))
49 eluzp1p1 12904 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
5048, 49syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
51 df-2 12327 . . . . . . . . . . . . . 14 2 = (1 + 1)
5251fveq2i 6910 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
5350, 52eleqtrrdi 2850 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘2))
54 exprmfct 16738 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5553, 54syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5621ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ)
5726ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋𝐷)
5827ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ)
5953adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈ (ℤ‘2))
60 simprl 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ)
61 simprr 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1))
62 simplrr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
63 simplrl 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ)
6463nnzd 12638 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ)
65 fzval3 13770 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
6664, 65syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1)))
6762, 66raleqtrdv 3326 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
6819, 20, 56, 22, 23, 24, 25, 57, 58, 59, 60, 61, 67dchrisum0flblem2 27568 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
6955, 68rexlimddv 3159 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
70 ovex 7464 . . . . . . . . . . 11 (𝑖 + 1) ∈ V
71 fveq2 6907 . . . . . . . . . . . . . 14 (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1)))
7271eleq1d 2824 . . . . . . . . . . . . 13 (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝑖 + 1)) ∈ ℕ))
7372ifbid 4554 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0))
74 fveq2 6907 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → (𝐹𝑦) = (𝐹‘(𝑖 + 1)))
7573, 74breq12d 5161 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1))))
7670, 75ralsn 4686 . . . . . . . . . 10 (∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7769, 76sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
7877expr 456 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
7978ancld 550 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
80 fzsuc 13608 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8147, 80syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8281raleqdv 3324 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
83 ralunb 4207 . . . . . . . 8 (∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8482, 83bitrdi 287 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8579, 84sylibrd 259 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8685expcom 413 . . . . 5 (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8786a2d 29 . . . 4 (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
889, 12, 15, 18, 44, 87nnind 12282 . . 3 (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
896, 88mpcom 38 . 2 (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
906, 46eleqtrdi 2849 . . 3 (𝜑𝐴 ∈ (ℤ‘1))
91 eluzfz2 13569 . . 3 (𝐴 ∈ (ℤ‘1) → 𝐴 ∈ (1...𝐴))
9290, 91syl 17 . 2 (𝜑𝐴 ∈ (1...𝐴))
935, 89, 92rspcdva 3623 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cun 3961  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  ..^cfzo 13691  cexp 14099  csqrt 15269  Σcsu 15719  cdvds 16287  cprime 16705  Basecbs 17245  0gc0g 17486  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-numer 16769  df-denom 16770  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-qus 17556  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-dchr 27292
This theorem is referenced by:  dchrisum0fno1  27570
  Copyright terms: Public domain W3C validator