| Step | Hyp | Ref
| Expression |
| 1 | | restcls.2 |
. . . 4
⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| 2 | | perftop 23164 |
. . . . . . 7
⊢ (𝐽 ∈ Perf → 𝐽 ∈ Top) |
| 3 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐽 ∈ Top) |
| 4 | | restcls.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
| 5 | 4 | toptopon 22923 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | 3, 5 | sylib 218 |
. . . . 5
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | | elssuni 4937 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐽 → 𝑌 ⊆ ∪ 𝐽) |
| 8 | 7 | adantl 481 |
. . . . . 6
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝑌 ⊆ ∪ 𝐽) |
| 9 | 8, 4 | sseqtrrdi 4025 |
. . . . 5
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝑌 ⊆ 𝑋) |
| 10 | | resttopon 23169 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 11 | 6, 9, 10 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 12 | 1, 11 | eqeltrid 2845 |
. . 3
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌)) |
| 13 | | topontop 22919 |
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 14 | 12, 13 | syl 17 |
. 2
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Top) |
| 15 | 9 | sselda 3983 |
. . . . . 6
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 16 | 4 | perfi 23163 |
. . . . . . 7
⊢ ((𝐽 ∈ Perf ∧ 𝑥 ∈ 𝑋) → ¬ {𝑥} ∈ 𝐽) |
| 17 | 16 | adantlr 715 |
. . . . . 6
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑋) → ¬ {𝑥} ∈ 𝐽) |
| 18 | 15, 17 | syldan 591 |
. . . . 5
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → ¬ {𝑥} ∈ 𝐽) |
| 19 | 1 | eleq2i 2833 |
. . . . . 6
⊢ ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽 ↾t 𝑌)) |
| 20 | | restopn2 23185 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽) → ({𝑥} ∈ (𝐽 ↾t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌))) |
| 21 | 2, 20 | sylan 580 |
. . . . . . . 8
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → ({𝑥} ∈ (𝐽 ↾t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌))) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → ({𝑥} ∈ (𝐽 ↾t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌))) |
| 23 | | simpl 482 |
. . . . . . 7
⊢ (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽) |
| 24 | 22, 23 | biimtrdi 253 |
. . . . . 6
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → ({𝑥} ∈ (𝐽 ↾t 𝑌) → {𝑥} ∈ 𝐽)) |
| 25 | 19, 24 | biimtrid 242 |
. . . . 5
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽)) |
| 26 | 18, 25 | mtod 198 |
. . . 4
⊢ (((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) ∧ 𝑥 ∈ 𝑌) → ¬ {𝑥} ∈ 𝐾) |
| 27 | 26 | ralrimiva 3146 |
. . 3
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → ∀𝑥 ∈ 𝑌 ¬ {𝑥} ∈ 𝐾) |
| 28 | | toponuni 22920 |
. . . 4
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 29 | 12, 28 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝑌 = ∪ 𝐾) |
| 30 | 27, 29 | raleqtrdv 3328 |
. 2
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → ∀𝑥 ∈ ∪ 𝐾 ¬ {𝑥} ∈ 𝐾) |
| 31 | | eqid 2737 |
. . 3
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 32 | 31 | isperf3 23161 |
. 2
⊢ (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐾
¬ {𝑥} ∈ 𝐾)) |
| 33 | 14, 30, 32 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Perf) |