MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfopn Structured version   Visualization version   GIF version

Theorem perfopn 23123
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
perfopn ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)

Proof of Theorem perfopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . 4 𝐾 = (𝐽t 𝑌)
2 perftop 23094 . . . . . . 7 (𝐽 ∈ Perf → 𝐽 ∈ Top)
32adantr 480 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ Top)
4 restcls.1 . . . . . . 7 𝑋 = 𝐽
54toptopon 22855 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 218 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ (TopOn‘𝑋))
7 elssuni 4913 . . . . . . 7 (𝑌𝐽𝑌 𝐽)
87adantl 481 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 𝐽)
98, 4sseqtrrdi 4000 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌𝑋)
10 resttopon 23099 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
116, 9, 10syl2anc 584 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
121, 11eqeltrid 2838 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 22851 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1412, 13syl 17 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Top)
159sselda 3958 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → 𝑥𝑋)
164perfi 23093 . . . . . . 7 ((𝐽 ∈ Perf ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1716adantlr 715 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1815, 17syldan 591 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐽)
191eleq2i 2826 . . . . . 6 ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽t 𝑌))
20 restopn2 23115 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
212, 20sylan 580 . . . . . . . 8 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
2221adantr 480 . . . . . . 7 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
23 simpl 482 . . . . . . 7 (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽)
2422, 23biimtrdi 253 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) → {𝑥} ∈ 𝐽))
2519, 24biimtrid 242 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽))
2618, 25mtod 198 . . . 4 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐾)
2726ralrimiva 3132 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾)
28 toponuni 22852 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2912, 28syl 17 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 = 𝐾)
3027, 29raleqtrdv 3307 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾)
31 eqid 2735 . . 3 𝐾 = 𝐾
3231isperf3 23091 . 2 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3314, 30, 32sylanbrc 583 1 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  {csn 4601   cuni 4883  cfv 6531  (class class class)co 7405  t crest 17434  Topctop 22831  TopOnctopon 22848  Perfcperf 23073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-en 8960  df-fin 8963  df-fi 9423  df-rest 17436  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-lp 23074  df-perf 23075
This theorem is referenced by:  perfdvf  25856
  Copyright terms: Public domain W3C validator