MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfopn Structured version   Visualization version   GIF version

Theorem perfopn 23079
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
perfopn ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)

Proof of Theorem perfopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . 4 𝐾 = (𝐽t 𝑌)
2 perftop 23050 . . . . . . 7 (𝐽 ∈ Perf → 𝐽 ∈ Top)
32adantr 480 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ Top)
4 restcls.1 . . . . . . 7 𝑋 = 𝐽
54toptopon 22811 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 218 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ (TopOn‘𝑋))
7 elssuni 4904 . . . . . . 7 (𝑌𝐽𝑌 𝐽)
87adantl 481 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 𝐽)
98, 4sseqtrrdi 3991 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌𝑋)
10 resttopon 23055 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
116, 9, 10syl2anc 584 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
121, 11eqeltrid 2833 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 22807 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1412, 13syl 17 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Top)
159sselda 3949 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → 𝑥𝑋)
164perfi 23049 . . . . . . 7 ((𝐽 ∈ Perf ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1716adantlr 715 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1815, 17syldan 591 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐽)
191eleq2i 2821 . . . . . 6 ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽t 𝑌))
20 restopn2 23071 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
212, 20sylan 580 . . . . . . . 8 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
2221adantr 480 . . . . . . 7 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
23 simpl 482 . . . . . . 7 (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽)
2422, 23biimtrdi 253 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) → {𝑥} ∈ 𝐽))
2519, 24biimtrid 242 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽))
2618, 25mtod 198 . . . 4 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐾)
2726ralrimiva 3126 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾)
28 toponuni 22808 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2912, 28syl 17 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 = 𝐾)
3027, 29raleqtrdv 3303 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾)
31 eqid 2730 . . 3 𝐾 = 𝐾
3231isperf3 23047 . 2 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3314, 30, 32sylanbrc 583 1 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  {csn 4592   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  Perfcperf 23029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-lp 23030  df-perf 23031
This theorem is referenced by:  perfdvf  25811
  Copyright terms: Public domain W3C validator