MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfopn Structured version   Visualization version   GIF version

Theorem perfopn 22434
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
perfopn ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)

Proof of Theorem perfopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . 4 𝐾 = (𝐽t 𝑌)
2 perftop 22405 . . . . . . 7 (𝐽 ∈ Perf → 𝐽 ∈ Top)
32adantr 481 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ Top)
4 restcls.1 . . . . . . 7 𝑋 = 𝐽
54toptopon 22164 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 217 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ (TopOn‘𝑋))
7 elssuni 4884 . . . . . . 7 (𝑌𝐽𝑌 𝐽)
87adantl 482 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 𝐽)
98, 4sseqtrrdi 3982 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌𝑋)
10 resttopon 22410 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
116, 9, 10syl2anc 584 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
121, 11eqeltrid 2841 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 22160 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1412, 13syl 17 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Top)
159sselda 3931 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → 𝑥𝑋)
164perfi 22404 . . . . . . 7 ((𝐽 ∈ Perf ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1716adantlr 712 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1815, 17syldan 591 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐽)
191eleq2i 2828 . . . . . 6 ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽t 𝑌))
20 restopn2 22426 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
212, 20sylan 580 . . . . . . . 8 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
2221adantr 481 . . . . . . 7 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
23 simpl 483 . . . . . . 7 (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽)
2422, 23syl6bi 252 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) → {𝑥} ∈ 𝐽))
2519, 24biimtrid 241 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽))
2618, 25mtod 197 . . . 4 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐾)
2726ralrimiva 3139 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾)
28 toponuni 22161 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2912, 28syl 17 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 = 𝐾)
3029raleqdv 3309 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾 ↔ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3127, 30mpbid 231 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾)
32 eqid 2736 . . 3 𝐾 = 𝐾
3332isperf3 22402 . 2 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3414, 31, 33sylanbrc 583 1 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wss 3897  {csn 4572   cuni 4851  cfv 6473  (class class class)co 7329  t crest 17220  Topctop 22140  TopOnctopon 22157  Perfcperf 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-en 8797  df-fin 8800  df-fi 9260  df-rest 17222  df-topgen 17243  df-top 22141  df-topon 22158  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-lp 22385  df-perf 22386
This theorem is referenced by:  perfdvf  25165
  Copyright terms: Public domain W3C validator