MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfopn Structured version   Visualization version   GIF version

Theorem perfopn 22036
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
perfopn ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)

Proof of Theorem perfopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . 4 𝐾 = (𝐽t 𝑌)
2 perftop 22007 . . . . . . 7 (𝐽 ∈ Perf → 𝐽 ∈ Top)
32adantr 484 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ Top)
4 restcls.1 . . . . . . 7 𝑋 = 𝐽
54toptopon 21768 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 221 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ (TopOn‘𝑋))
7 elssuni 4837 . . . . . . 7 (𝑌𝐽𝑌 𝐽)
87adantl 485 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 𝐽)
98, 4sseqtrrdi 3938 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌𝑋)
10 resttopon 22012 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
116, 9, 10syl2anc 587 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
121, 11eqeltrid 2835 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 21764 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1412, 13syl 17 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Top)
159sselda 3887 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → 𝑥𝑋)
164perfi 22006 . . . . . . 7 ((𝐽 ∈ Perf ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1716adantlr 715 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1815, 17syldan 594 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐽)
191eleq2i 2822 . . . . . 6 ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽t 𝑌))
20 restopn2 22028 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
212, 20sylan 583 . . . . . . . 8 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
2221adantr 484 . . . . . . 7 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
23 simpl 486 . . . . . . 7 (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽)
2422, 23syl6bi 256 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) → {𝑥} ∈ 𝐽))
2519, 24syl5bi 245 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽))
2618, 25mtod 201 . . . 4 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐾)
2726ralrimiva 3095 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾)
28 toponuni 21765 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2912, 28syl 17 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 = 𝐾)
3029raleqdv 3315 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾 ↔ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3127, 30mpbid 235 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾)
32 eqid 2736 . . 3 𝐾 = 𝐾
3332isperf3 22004 . 2 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3414, 31, 33sylanbrc 586 1 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wss 3853  {csn 4527   cuni 4805  cfv 6358  (class class class)co 7191  t crest 16879  Topctop 21744  TopOnctopon 21761  Perfcperf 21986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-en 8605  df-fin 8608  df-fi 9005  df-rest 16881  df-topgen 16902  df-top 21745  df-topon 21762  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-lp 21987  df-perf 21988
This theorem is referenced by:  perfdvf  24754
  Copyright terms: Public domain W3C validator