MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfopn Structured version   Visualization version   GIF version

Theorem perfopn 23088
Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
perfopn ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)

Proof of Theorem perfopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . 4 𝐾 = (𝐽t 𝑌)
2 perftop 23059 . . . . . . 7 (𝐽 ∈ Perf → 𝐽 ∈ Top)
32adantr 480 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ Top)
4 restcls.1 . . . . . . 7 𝑋 = 𝐽
54toptopon 22820 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 218 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐽 ∈ (TopOn‘𝑋))
7 elssuni 4891 . . . . . . 7 (𝑌𝐽𝑌 𝐽)
87adantl 481 . . . . . 6 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 𝐽)
98, 4sseqtrrdi 3979 . . . . 5 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌𝑋)
10 resttopon 23064 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
116, 9, 10syl2anc 584 . . . 4 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
121, 11eqeltrid 2832 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ (TopOn‘𝑌))
13 topontop 22816 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1412, 13syl 17 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Top)
159sselda 3937 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → 𝑥𝑋)
164perfi 23058 . . . . . . 7 ((𝐽 ∈ Perf ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1716adantlr 715 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑋) → ¬ {𝑥} ∈ 𝐽)
1815, 17syldan 591 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐽)
191eleq2i 2820 . . . . . 6 ({𝑥} ∈ 𝐾 ↔ {𝑥} ∈ (𝐽t 𝑌))
20 restopn2 23080 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
212, 20sylan 580 . . . . . . . 8 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
2221adantr 480 . . . . . . 7 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) ↔ ({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌)))
23 simpl 482 . . . . . . 7 (({𝑥} ∈ 𝐽 ∧ {𝑥} ⊆ 𝑌) → {𝑥} ∈ 𝐽)
2422, 23biimtrdi 253 . . . . . 6 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ (𝐽t 𝑌) → {𝑥} ∈ 𝐽))
2519, 24biimtrid 242 . . . . 5 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ({𝑥} ∈ 𝐾 → {𝑥} ∈ 𝐽))
2618, 25mtod 198 . . . 4 (((𝐽 ∈ Perf ∧ 𝑌𝐽) ∧ 𝑥𝑌) → ¬ {𝑥} ∈ 𝐾)
2726ralrimiva 3121 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥𝑌 ¬ {𝑥} ∈ 𝐾)
28 toponuni 22817 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2912, 28syl 17 . . 3 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝑌 = 𝐾)
3027, 29raleqtrdv 3292 . 2 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾)
31 eqid 2729 . . 3 𝐾 = 𝐾
3231isperf3 23056 . 2 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ∀𝑥 𝐾 ¬ {𝑥} ∈ 𝐾))
3314, 30, 32sylanbrc 583 1 ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905  {csn 4579   cuni 4861  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  TopOnctopon 22813  Perfcperf 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-lp 23039  df-perf 23040
This theorem is referenced by:  perfdvf  25820
  Copyright terms: Public domain W3C validator