MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlem Structured version   Visualization version   GIF version

Theorem dgrlem 26150
Description: Lemma for dgrcl 26154 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrlem (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝐹,𝑥   𝑆,𝑛,𝑥

Proof of Theorem dgrlem
Dummy variables 𝑎 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 26117 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
21simprbi 496 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
3 simplrr 777 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
4 simpll 766 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 ∈ (Poly‘𝑆))
5 plybss 26115 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
64, 5syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
7 0cnd 11127 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 0 ∈ ℂ)
87snssd 4763 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → {0} ⊆ ℂ)
96, 8unssd 4145 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
10 cnex 11109 . . . . . . . . 9 ℂ ∈ V
11 ssexg 5265 . . . . . . . . 9 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
129, 10, 11sylancl 586 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ∈ V)
13 nn0ex 12408 . . . . . . . 8 0 ∈ V
14 elmapg 8773 . . . . . . . 8 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1512, 13, 14sylancl 586 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
163, 15mpbid 232 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
17 dgrval.1 . . . . . . . 8 𝐴 = (coeff‘𝐹)
18 simplrl 776 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑛 ∈ ℕ0)
1916, 9fssd 6673 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑎:ℕ0⟶ℂ)
20 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
21 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
224, 18, 19, 20, 21coeeq 26148 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (coeff‘𝐹) = 𝑎)
2317, 22eqtr2id 2777 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑎 = 𝐴)
2423feq1d 6638 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
2516, 24mpbid 232 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
2625ex 412 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐴:ℕ0⟶(𝑆 ∪ {0})))
2726rexlimdvva 3186 . . 3 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐴:ℕ0⟶(𝑆 ∪ {0})))
282, 27mpd 15 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
29 nn0ssz 12512 . . 3 0 ⊆ ℤ
30 ffn 6656 . . . . . . . . . . . . . 14 (𝑎:ℕ0⟶ℂ → 𝑎 Fn ℕ0)
31 elpreima 6996 . . . . . . . . . . . . . 14 (𝑎 Fn ℕ0 → (𝑥 ∈ (𝑎 “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℕ0 ∧ (𝑎𝑥) ∈ (ℂ ∖ {0}))))
3219, 30, 313syl 18 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑥 ∈ (𝑎 “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℕ0 ∧ (𝑎𝑥) ∈ (ℂ ∖ {0}))))
3332biimpa 476 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))) → (𝑥 ∈ ℕ0 ∧ (𝑎𝑥) ∈ (ℂ ∖ {0})))
34 eldifsni 4744 . . . . . . . . . . . 12 ((𝑎𝑥) ∈ (ℂ ∖ {0}) → (𝑎𝑥) ≠ 0)
3533, 34simpl2im 503 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))) → (𝑎𝑥) ≠ 0)
3633simpld 494 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))) → 𝑥 ∈ ℕ0)
37 plyco0 26113 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑎:ℕ0⟶ℂ) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑥 ∈ ℕ0 ((𝑎𝑥) ≠ 0 → 𝑥𝑛)))
3818, 19, 37syl2anc 584 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑥 ∈ ℕ0 ((𝑎𝑥) ≠ 0 → 𝑥𝑛)))
3920, 38mpbid 232 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → ∀𝑥 ∈ ℕ0 ((𝑎𝑥) ≠ 0 → 𝑥𝑛))
4039r19.21bi 3221 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ ℕ0) → ((𝑎𝑥) ≠ 0 → 𝑥𝑛))
4136, 40syldan 591 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))) → ((𝑎𝑥) ≠ 0 → 𝑥𝑛))
4235, 41mpd 15 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∧ 𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))) → 𝑥𝑛)
4342ralrimiva 3121 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → ∀𝑥 ∈ (𝑎 “ (ℂ ∖ {0}))𝑥𝑛)
4423cnveqd 5822 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝑎 = 𝐴)
4544imaeq1d 6014 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑎 “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
4643, 45raleqtrdv 3292 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
4746ex 412 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
4847expr 456 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)))
4948rexlimdv 3128 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
5049reximdva 3142 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
512, 50mpd 15 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
52 ssrexv 4007 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛 → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
5329, 51, 52mpsyl 68 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
5428, 53jca 511 1 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176  ccnv 5622  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cexp 13986  Σcsu 15611  Polycply 26105  coeffccoe 26107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111
This theorem is referenced by:  coef  26151  dgrcl  26154  dgrub  26155  dgrlb  26157
  Copyright terms: Public domain W3C validator