Step | Hyp | Ref
| Expression |
1 | | poimirlem2.3 |
. . . . 5
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) |
2 | | f1of 6700 |
. . . . 5
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)⟶(1...𝑁)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈:(1...𝑁)⟶(1...𝑁)) |
4 | | poimir.0 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | nncnd 11919 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℂ) |
6 | | npcan1 11330 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
8 | 4 | nnzd 12354 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
9 | | peano2zm 12293 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
10 | | uzid 12526 |
. . . . . . . 8
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
11 | | peano2uz 12570 |
. . . . . . . 8
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
12 | 8, 9, 10, 11 | 4syl 19 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
13 | 7, 12 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
14 | | fzss2 13225 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
16 | | poimirlem1.4 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
17 | 15, 16 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
18 | 3, 17 | ffvelrnd 6944 |
. . 3
⊢ (𝜑 → (𝑈‘𝑀) ∈ (1...𝑁)) |
19 | | fzp1elp1 13238 |
. . . . . 6
⊢ (𝑀 ∈ (1...(𝑁 − 1)) → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1))) |
20 | 16, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1))) |
21 | 7 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
22 | 20, 21 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
23 | 3, 22 | ffvelrnd 6944 |
. . 3
⊢ (𝜑 → (𝑈‘(𝑀 + 1)) ∈ (1...𝑁)) |
24 | | imassrn 5969 |
. . . . . . . . . 10
⊢ (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ ran 𝑈 |
25 | | frn 6591 |
. . . . . . . . . . 11
⊢ (𝑈:(1...𝑁)⟶(1...𝑁) → ran 𝑈 ⊆ (1...𝑁)) |
26 | 1, 2, 25 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑈 ⊆ (1...𝑁)) |
27 | 24, 26 | sstrid 3928 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (1...𝑁)) |
28 | 27 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (1...𝑁)) |
29 | | poimirlem2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) |
30 | 29 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) ∈ ℤ) |
31 | 30 | zred 12355 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) ∈ ℝ) |
32 | 31 | ltp1d 11835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) < ((𝑇‘𝑛) + 1)) |
33 | 31, 32 | ltned 11041 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) ≠ ((𝑇‘𝑛) + 1)) |
34 | 28, 33 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (𝑇‘𝑛) ≠ ((𝑇‘𝑛) + 1)) |
35 | | poimirlem2.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
36 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑀 − 1) → (𝑦 < 𝑀 ↔ (𝑀 − 1) < 𝑀)) |
37 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑀 − 1) → 𝑦 = (𝑀 − 1)) |
38 | 36, 37 | ifbieq1d 4480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑀 − 1) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1))) |
39 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ ℤ) |
40 | 16, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℤ) |
41 | 40 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℝ) |
42 | 41 | ltm1d 11837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 − 1) < 𝑀) |
43 | 42 | iftrued 4464 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1)) = (𝑀 − 1)) |
44 | 38, 43 | sylan9eqr 2801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 − 1)) |
45 | 44 | csbeq1d 3832 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 = (𝑀 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑀 − 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
46 | 8, 9 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
47 | | elfzm1b 13263 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
→ (𝑀 ∈
(1...(𝑁 − 1)) ↔
(𝑀 − 1) ∈
(0...((𝑁 − 1) −
1)))) |
48 | 40, 46, 47 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ↔ (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1)))) |
49 | 16, 48 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1))) |
50 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑀 − 1) → (1...𝑗) = (1...(𝑀 − 1))) |
51 | 50 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑀 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 − 1)))) |
52 | 51 | xpeq1d 5609 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑀 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1})) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1})) |
54 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑀 − 1) → (𝑗 + 1) = ((𝑀 − 1) + 1)) |
55 | 40 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ ℂ) |
56 | | npcan1 11330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
58 | 54, 57 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → (𝑗 + 1) = 𝑀) |
59 | 58 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → ((𝑗 + 1)...𝑁) = (𝑀...𝑁)) |
60 | 59 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (𝑀...𝑁))) |
61 | 60 | xpeq1d 5609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (𝑀...𝑁)) × {0})) |
62 | 53, 61 | uneq12d 4094 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))) |
63 | 62 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 = (𝑀 − 1)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))) |
64 | 49, 63 | csbied 3866 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⦋(𝑀 − 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))) |
65 | 64 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 = (𝑀 − 1)) → ⦋(𝑀 − 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))) |
66 | 45, 65 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 = (𝑀 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))) |
67 | 46 | zcnd 12356 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 − 1) ∈ ℂ) |
68 | | npcan1 11330 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℂ
→ (((𝑁 − 1)
− 1) + 1) = (𝑁
− 1)) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑁 − 1) − 1) + 1) = (𝑁 − 1)) |
70 | | peano2zm 12293 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℤ
→ ((𝑁 − 1)
− 1) ∈ ℤ) |
71 | | uzid 12526 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 − 1) − 1) ∈
ℤ → ((𝑁 −
1) − 1) ∈ (ℤ≥‘((𝑁 − 1) − 1))) |
72 | | peano2uz 12570 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 − 1) − 1) ∈
(ℤ≥‘((𝑁 − 1) − 1)) → (((𝑁 − 1) − 1) + 1)
∈ (ℤ≥‘((𝑁 − 1) − 1))) |
73 | 46, 70, 71, 72 | 4syl 19 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑁 − 1) − 1) + 1) ∈
(ℤ≥‘((𝑁 − 1) − 1))) |
74 | 69, 73 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘((𝑁 − 1) − 1))) |
75 | | fzss2 13225 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘((𝑁 − 1) − 1)) → (0...((𝑁 − 1) − 1)) ⊆
(0...(𝑁 −
1))) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...((𝑁 − 1) − 1)) ⊆ (0...(𝑁 − 1))) |
77 | 76, 49 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 − 1) ∈ (0...(𝑁 − 1))) |
78 | | ovexd 7290 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))) ∈ V) |
79 | 35, 66, 77, 78 | fvmptd 6864 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝑀 − 1)) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))) |
80 | 79 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛)) |
81 | 80 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛)) |
82 | 29 | ffnd 6585 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 Fn (1...𝑁)) |
83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑇 Fn (1...𝑁)) |
84 | | 1ex 10902 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
85 | | fnconstg 6646 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑀 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑀 −
1)))) |
86 | 84, 85 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) |
87 | | c0ex 10900 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
88 | | fnconstg 6646 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V → ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))) |
89 | 87, 88 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)) |
90 | 86, 89 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))) |
91 | | dff1o3 6706 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) |
92 | 91 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) |
93 | | imain 6503 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁)))) |
94 | 1, 92, 93 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁)))) |
95 | | fzdisj 13212 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅) |
96 | 42, 95 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅) |
97 | 96 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = (𝑈 “ ∅)) |
98 | | ima0 5974 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 “ ∅) =
∅ |
99 | 97, 98 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ∅) |
100 | 94, 99 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅) |
101 | | fnun 6529 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 “
(1...(𝑀 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑀 − 1))) ∧
((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))) ∧ ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁)))) |
102 | 90, 100, 101 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁)))) |
103 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈
(ℤ≥‘1)) |
104 | 16, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
105 | 57, 104 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑀 − 1) + 1) ∈
(ℤ≥‘1)) |
106 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
107 | | uzid 12526 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 − 1) ∈ ℤ
→ (𝑀 − 1) ∈
(ℤ≥‘(𝑀 − 1))) |
108 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 − 1) ∈
(ℤ≥‘(𝑀 − 1)) → ((𝑀 − 1) + 1) ∈
(ℤ≥‘(𝑀 − 1))) |
109 | 40, 106, 107, 108 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑀 − 1) + 1) ∈
(ℤ≥‘(𝑀 − 1))) |
110 | 57, 109 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
111 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈
(ℤ≥‘(𝑀 − 1)) → (𝑀 + 1) ∈
(ℤ≥‘(𝑀 − 1))) |
112 | | uzss 12534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑀 − 1)) →
(ℤ≥‘(𝑀 + 1)) ⊆
(ℤ≥‘(𝑀 − 1))) |
113 | 110, 111,
112 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
(ℤ≥‘(𝑀 − 1))) |
114 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
115 | | eluzp1p1 12539 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
116 | 16, 114, 115 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
117 | 7, 116 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
118 | 113, 117 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) |
119 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑀 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁))) |
120 | 105, 118,
119 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁))) |
121 | 57 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑀 − 1) + 1)...𝑁) = (𝑀...𝑁)) |
122 | 121 | uneq2d 4093 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) |
123 | 120, 122 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) |
124 | 123 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))) |
125 | | imaundi 6042 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) |
126 | 124, 125 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁)))) |
127 | | f1ofo 6707 |
. . . . . . . . . . . . . . 15
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
128 | | foima 6677 |
. . . . . . . . . . . . . . 15
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
129 | 1, 127, 128 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
130 | 126, 129 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) = (1...𝑁)) |
131 | 130 | fneq2d 6511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) ↔ (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))) |
132 | 102, 131 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁)) |
133 | 132 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁)) |
134 | | ovexd 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (1...𝑁) ∈ V) |
135 | | inidm 4149 |
. . . . . . . . . 10
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
136 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
137 | 100 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅) |
138 | | fzss2 13225 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁)) |
139 | | imass2 5999 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁))) |
140 | 117, 138,
139 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁))) |
141 | 140 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (𝑀...𝑁))) |
142 | | fvun2 6842 |
. . . . . . . . . . . . . 14
⊢ ((((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)) ∧ (((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛)) |
143 | 86, 89, 142 | mp3an12 1449 |
. . . . . . . . . . . . 13
⊢ ((((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛)) |
144 | 137, 141,
143 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛)) |
145 | 87 | fvconst2 7061 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑈 “ (𝑀...𝑁)) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0) |
146 | 141, 145 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0) |
147 | 144, 146 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0) |
148 | 147 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0) |
149 | 83, 133, 134, 134, 135, 136, 148 | ofval 7522 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
150 | 28, 149 | mpdan 683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
151 | 30 | zcnd 12356 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) ∈ ℂ) |
152 | 151 | addid1d 11105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇‘𝑛) + 0) = (𝑇‘𝑛)) |
153 | 28, 152 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇‘𝑛) + 0) = (𝑇‘𝑛)) |
154 | 81, 150, 153 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = (𝑇‘𝑛)) |
155 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑀 → (𝑦 < 𝑀 ↔ 𝑀 < 𝑀)) |
156 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑀 → (𝑦 + 1) = (𝑀 + 1)) |
157 | 155, 156 | ifbieq2d 4482 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if(𝑀 < 𝑀, 𝑦, (𝑀 + 1))) |
158 | 41 | ltnrd 11039 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑀 < 𝑀) |
159 | 158 | iffalsed 4467 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑀 < 𝑀, 𝑦, (𝑀 + 1)) = (𝑀 + 1)) |
160 | 157, 159 | sylan9eqr 2801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 + 1)) |
161 | 160 | csbeq1d 3832 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 = 𝑀) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑀 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
162 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ (𝑀 + 1) ∈ V |
163 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑀 + 1) → (1...𝑗) = (1...(𝑀 + 1))) |
164 | 163 | imaeq2d 5958 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑀 + 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 + 1)))) |
165 | 164 | xpeq1d 5609 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑀 + 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 + 1))) × {1})) |
166 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑀 + 1) → (𝑗 + 1) = ((𝑀 + 1) + 1)) |
167 | 166 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑀 + 1) → ((𝑗 + 1)...𝑁) = (((𝑀 + 1) + 1)...𝑁)) |
168 | 167 | imaeq2d 5958 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑀 + 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) |
169 | 168 | xpeq1d 5609 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑀 + 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) |
170 | 165, 169 | uneq12d 4094 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑀 + 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))) |
171 | 170 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑀 + 1) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))) |
172 | 162, 171 | csbie 3864 |
. . . . . . . . . . . 12
⊢
⦋(𝑀 +
1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))) |
173 | 161, 172 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 = 𝑀) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))) |
174 | | fz1ssfz0 13281 |
. . . . . . . . . . . 12
⊢
(1...(𝑁 − 1))
⊆ (0...(𝑁 −
1)) |
175 | 174, 16 | sselid 3915 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...(𝑁 − 1))) |
176 | | ovexd 7290 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))) ∈ V) |
177 | 35, 173, 175, 176 | fvmptd 6864 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) = (𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))) |
178 | 177 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑀)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
179 | 178 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘𝑀)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
180 | | fnconstg 6646 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑀 + 1))) × {1})
Fn (𝑈 “ (1...(𝑀 + 1)))) |
181 | 84, 180 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) |
182 | | fnconstg 6646 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V → ((𝑈 “
(((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) |
183 | 87, 182 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)) |
184 | 181, 183 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) |
185 | | imain 6503 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))) |
186 | 1, 92, 185 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))) |
187 | | peano2re 11078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
188 | 41, 187 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
189 | 188 | ltp1d 11835 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 + 1) < ((𝑀 + 1) + 1)) |
190 | | fzdisj 13212 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 + 1) < ((𝑀 + 1) + 1) → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅) |
191 | 189, 190 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅) |
192 | 191 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅)) |
193 | 186, 192 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅)) |
194 | 193, 98 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅) |
195 | | fnun 6529 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 “
(1...(𝑀 + 1))) × {1})
Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ∧ ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))) |
196 | 184, 194,
195 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))) |
197 | | fzsplit 13211 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
198 | 22, 197 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
199 | 198 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))) |
200 | | imaundi 6042 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) |
201 | 199, 200 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))) |
202 | 201, 129 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (1...𝑁)) |
203 | 202 | fneq2d 6511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ↔ (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
204 | 196, 203 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
205 | 204 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
206 | 194 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅) |
207 | | fzss1 13224 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘1) → (𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1))) |
208 | | imass2 5999 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1)))) |
209 | 104, 207,
208 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1)))) |
210 | 209 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1)))) |
211 | | fvun1 6841 |
. . . . . . . . . . . . . 14
⊢ ((((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛)) |
212 | 181, 183,
211 | mp3an12 1449 |
. . . . . . . . . . . . 13
⊢ ((((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛)) |
213 | 206, 210,
212 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛)) |
214 | 84 | fvconst2 7061 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1) |
215 | 210, 214 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1) |
216 | 213, 215 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
217 | 216 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
218 | 83, 205, 134, 134, 135, 136, 217 | ofval 7522 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
219 | 28, 218 | mpdan 683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
220 | 179, 219 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘𝑀)‘𝑛) = ((𝑇‘𝑛) + 1)) |
221 | 34, 154, 220 | 3netr4d 3020 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) |
222 | 221 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) |
223 | | fzpr 13240 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
224 | 16, 39, 223 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
225 | 224 | imaeq2d 5958 |
. . . . . . 7
⊢ (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = (𝑈 “ {𝑀, (𝑀 + 1)})) |
226 | | f1ofn 6701 |
. . . . . . . . 9
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁)) |
227 | 1, 226 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 Fn (1...𝑁)) |
228 | | fnimapr 6834 |
. . . . . . . 8
⊢ ((𝑈 Fn (1...𝑁) ∧ 𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁)) → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈‘𝑀), (𝑈‘(𝑀 + 1))}) |
229 | 227, 17, 22, 228 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈‘𝑀), (𝑈‘(𝑀 + 1))}) |
230 | 225, 229 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = {(𝑈‘𝑀), (𝑈‘(𝑀 + 1))}) |
231 | 230 | raleqdv 3339 |
. . . . 5
⊢ (𝜑 → (∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ∀𝑛 ∈ {(𝑈‘𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛))) |
232 | 222, 231 | mpbid 231 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ {(𝑈‘𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) |
233 | | fvex 6769 |
. . . . 5
⊢ (𝑈‘𝑀) ∈ V |
234 | | fvex 6769 |
. . . . 5
⊢ (𝑈‘(𝑀 + 1)) ∈ V |
235 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = (𝑈‘𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀))) |
236 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = (𝑈‘𝑀) → ((𝐹‘𝑀)‘𝑛) = ((𝐹‘𝑀)‘(𝑈‘𝑀))) |
237 | 235, 236 | neeq12d 3004 |
. . . . 5
⊢ (𝑛 = (𝑈‘𝑀) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)))) |
238 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1)))) |
239 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹‘𝑀)‘𝑛) = ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1)))) |
240 | 238, 239 | neeq12d 3004 |
. . . . 5
⊢ (𝑛 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1))))) |
241 | 233, 234,
237, 240 | ralpr 4633 |
. . . 4
⊢
(∀𝑛 ∈
{(𝑈‘𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1))))) |
242 | 232, 241 | sylib 217 |
. . 3
⊢ (𝜑 → (((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1))))) |
243 | 41 | ltp1d 11835 |
. . . . 5
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
244 | 41, 243 | ltned 11041 |
. . . 4
⊢ (𝜑 → 𝑀 ≠ (𝑀 + 1)) |
245 | | f1of1 6699 |
. . . . . . 7
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–1-1→(1...𝑁)) |
246 | 1, 245 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1→(1...𝑁)) |
247 | | f1veqaeq 7111 |
. . . . . 6
⊢ ((𝑈:(1...𝑁)–1-1→(1...𝑁) ∧ (𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁))) → ((𝑈‘𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1))) |
248 | 246, 17, 22, 247 | syl12anc 833 |
. . . . 5
⊢ (𝜑 → ((𝑈‘𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1))) |
249 | 248 | necon3d 2963 |
. . . 4
⊢ (𝜑 → (𝑀 ≠ (𝑀 + 1) → (𝑈‘𝑀) ≠ (𝑈‘(𝑀 + 1)))) |
250 | 244, 249 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑈‘𝑀) ≠ (𝑈‘(𝑀 + 1))) |
251 | 237 | anbi1d 629 |
. . . . 5
⊢ (𝑛 = (𝑈‘𝑀) → ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)))) |
252 | | neeq1 3005 |
. . . . 5
⊢ (𝑛 = (𝑈‘𝑀) → (𝑛 ≠ 𝑚 ↔ (𝑈‘𝑀) ≠ 𝑚)) |
253 | 251, 252 | anbi12d 630 |
. . . 4
⊢ (𝑛 = (𝑈‘𝑀) → (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ (𝑈‘𝑀) ≠ 𝑚))) |
254 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑚) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1)))) |
255 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹‘𝑀)‘𝑚) = ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1)))) |
256 | 254, 255 | neeq12d 3004 |
. . . . . 6
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1))))) |
257 | 256 | anbi2d 628 |
. . . . 5
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → ((((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1)))))) |
258 | | neeq2 3006 |
. . . . 5
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝑈‘𝑀) ≠ 𝑚 ↔ (𝑈‘𝑀) ≠ (𝑈‘(𝑀 + 1)))) |
259 | 257, 258 | anbi12d 630 |
. . . 4
⊢ (𝑚 = (𝑈‘(𝑀 + 1)) → (((((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ (𝑈‘𝑀) ≠ 𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈‘𝑀) ≠ (𝑈‘(𝑀 + 1))))) |
260 | 253, 259 | rspc2ev 3564 |
. . 3
⊢ (((𝑈‘𝑀) ∈ (1...𝑁) ∧ (𝑈‘(𝑀 + 1)) ∈ (1...𝑁) ∧ ((((𝐹‘(𝑀 − 1))‘(𝑈‘𝑀)) ≠ ((𝐹‘𝑀)‘(𝑈‘𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹‘𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈‘𝑀) ≠ (𝑈‘(𝑀 + 1)))) → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
261 | 18, 23, 242, 250, 260 | syl112anc 1372 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
262 | | dfrex2 3166 |
. . 3
⊢
(∃𝑛 ∈
(1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ¬ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
263 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘𝑚)) |
264 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑀)‘𝑛) = ((𝐹‘𝑀)‘𝑚)) |
265 | 263, 264 | neeq12d 3004 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚))) |
266 | 265 | rmo4 3660 |
. . . 4
⊢
(∃*𝑛 ∈
(1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚)) |
267 | | dfral2 3164 |
. . . . . 6
⊢
(∀𝑚 ∈
(1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚)) |
268 | | df-ne 2943 |
. . . . . . . . 9
⊢ (𝑛 ≠ 𝑚 ↔ ¬ 𝑛 = 𝑚) |
269 | 268 | anbi2i 622 |
. . . . . . . 8
⊢
(((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚)) |
270 | | annim 403 |
. . . . . . . 8
⊢
(((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚)) |
271 | 269, 270 | bitri 274 |
. . . . . . 7
⊢
(((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚)) |
272 | 271 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑚 ∈
(1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚)) |
273 | 267, 272 | xchbinxr 334 |
. . . . 5
⊢
(∀𝑚 ∈
(1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
274 | 273 | ralbii 3090 |
. . . 4
⊢
(∀𝑛 ∈
(1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
275 | 266, 274 | bitri 274 |
. . 3
⊢
(∃*𝑛 ∈
(1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚)) |
276 | 262, 275 | xchbinxr 334 |
. 2
⊢
(∃𝑛 ∈
(1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹‘𝑀)‘𝑚)) ∧ 𝑛 ≠ 𝑚) ↔ ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) |
277 | 261, 276 | sylib 217 |
1
⊢ (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) |