Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem1 Structured version   Visualization version   GIF version

Theorem poimirlem1 34908
Description: Lemma for poimir 34940- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem2.1 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))
poimirlem2.2 (𝜑𝑇:(1...𝑁)⟶ℤ)
poimirlem2.3 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
poimirlem1.4 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
Assertion
Ref Expression
poimirlem1 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
Distinct variable groups:   𝑗,𝑛,𝑦,𝜑   𝑗,𝐹,𝑛,𝑦   𝑗,𝑀,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝑈,𝑗,𝑛,𝑦

Proof of Theorem poimirlem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 poimirlem2.3 . . . . 5 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
2 f1of 6615 . . . . 5 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)⟶(1...𝑁))
31, 2syl 17 . . . 4 (𝜑𝑈:(1...𝑁)⟶(1...𝑁))
4 poimir.0 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nncnd 11654 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
6 npcan1 11065 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
75, 6syl 17 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
84nnzd 12087 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
9 peano2zm 12026 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
10 uzid 12259 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
11 peano2uz 12302 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
128, 9, 10, 114syl 19 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
137, 12eqeltrrd 2914 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
14 fzss2 12948 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1513, 14syl 17 . . . . 5 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
16 poimirlem1.4 . . . . 5 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
1715, 16sseldd 3968 . . . 4 (𝜑𝑀 ∈ (1...𝑁))
183, 17ffvelrnd 6852 . . 3 (𝜑 → (𝑈𝑀) ∈ (1...𝑁))
19 fzp1elp1 12961 . . . . . 6 (𝑀 ∈ (1...(𝑁 − 1)) → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1)))
2016, 19syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1)))
217oveq2d 7172 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
2220, 21eleqtrd 2915 . . . 4 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
233, 22ffvelrnd 6852 . . 3 (𝜑 → (𝑈‘(𝑀 + 1)) ∈ (1...𝑁))
24 imassrn 5940 . . . . . . . . . 10 (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ ran 𝑈
25 frn 6520 . . . . . . . . . . 11 (𝑈:(1...𝑁)⟶(1...𝑁) → ran 𝑈 ⊆ (1...𝑁))
261, 2, 253syl 18 . . . . . . . . . 10 (𝜑 → ran 𝑈 ⊆ (1...𝑁))
2724, 26sstrid 3978 . . . . . . . . 9 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (1...𝑁))
2827sselda 3967 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (1...𝑁))
29 poimirlem2.2 . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ℤ)
3029ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℤ)
3130zred 12088 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℝ)
3231ltp1d 11570 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) < ((𝑇𝑛) + 1))
3331, 32ltned 10776 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ≠ ((𝑇𝑛) + 1))
3428, 33syldan 593 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (𝑇𝑛) ≠ ((𝑇𝑛) + 1))
35 poimirlem2.1 . . . . . . . . . . 11 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))
36 breq1 5069 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀 − 1) → (𝑦 < 𝑀 ↔ (𝑀 − 1) < 𝑀))
37 id 22 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀 − 1) → 𝑦 = (𝑀 − 1))
3836, 37ifbieq1d 4490 . . . . . . . . . . . . . 14 (𝑦 = (𝑀 − 1) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1)))
39 elfzelz 12909 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ ℤ)
4016, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
4140zred 12088 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
4241ltm1d 11572 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) < 𝑀)
4342iftrued 4475 . . . . . . . . . . . . . 14 (𝜑 → if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1)) = (𝑀 − 1))
4438, 43sylan9eqr 2878 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 − 1))
4544csbeq1d 3887 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑀 − 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
468, 9syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
47 elfzm1b 12986 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ∈ (1...(𝑁 − 1)) ↔ (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1))))
4840, 46, 47syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ↔ (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1))))
4916, 48mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1)))
50 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 − 1) → (1...𝑗) = (1...(𝑀 − 1)))
5150imaeq2d 5929 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 − 1))))
5251xpeq1d 5584 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1}))
5352adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1}))
54 oveq1 7163 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑀 − 1) → (𝑗 + 1) = ((𝑀 − 1) + 1))
5540zcnd 12089 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℂ)
56 npcan1 11065 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
5854, 57sylan9eqr 2878 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 = (𝑀 − 1)) → (𝑗 + 1) = 𝑀)
5958oveq1d 7171 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑗 + 1)...𝑁) = (𝑀...𝑁))
6059imaeq2d 5929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = (𝑀 − 1)) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (𝑀...𝑁)))
6160xpeq1d 5584 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (𝑀...𝑁)) × {0}))
6253, 61uneq12d 4140 . . . . . . . . . . . . . . 15 ((𝜑𝑗 = (𝑀 − 1)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))
6362oveq2d 7172 . . . . . . . . . . . . . 14 ((𝜑𝑗 = (𝑀 − 1)) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6449, 63csbied 3919 . . . . . . . . . . . . 13 (𝜑(𝑀 − 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6564adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → (𝑀 − 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6645, 65eqtrd 2856 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6746zcnd 12089 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) ∈ ℂ)
68 npcan1 11065 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℂ → (((𝑁 − 1) − 1) + 1) = (𝑁 − 1))
6967, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → (((𝑁 − 1) − 1) + 1) = (𝑁 − 1))
70 peano2zm 12026 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℤ → ((𝑁 − 1) − 1) ∈ ℤ)
71 uzid 12259 . . . . . . . . . . . . . . 15 (((𝑁 − 1) − 1) ∈ ℤ → ((𝑁 − 1) − 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
72 peano2uz 12302 . . . . . . . . . . . . . . 15 (((𝑁 − 1) − 1) ∈ (ℤ‘((𝑁 − 1) − 1)) → (((𝑁 − 1) − 1) + 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
7346, 70, 71, 724syl 19 . . . . . . . . . . . . . 14 (𝜑 → (((𝑁 − 1) − 1) + 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
7469, 73eqeltrrd 2914 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
75 fzss2 12948 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘((𝑁 − 1) − 1)) → (0...((𝑁 − 1) − 1)) ⊆ (0...(𝑁 − 1)))
7674, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (0...((𝑁 − 1) − 1)) ⊆ (0...(𝑁 − 1)))
7776, 49sseldd 3968 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
78 ovexd 7191 . . . . . . . . . . 11 (𝜑 → (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))) ∈ V)
7935, 66, 77, 78fvmptd 6775 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝑀 − 1)) = (𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
8079fveq1d 6672 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛))
8180adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛))
8229ffnd 6515 . . . . . . . . . . 11 (𝜑𝑇 Fn (1...𝑁))
8382adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑇 Fn (1...𝑁))
84 1ex 10637 . . . . . . . . . . . . . . 15 1 ∈ V
85 fnconstg 6567 . . . . . . . . . . . . . . 15 (1 ∈ V → ((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))))
8684, 85ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1)))
87 c0ex 10635 . . . . . . . . . . . . . . 15 0 ∈ V
88 fnconstg 6567 . . . . . . . . . . . . . . 15 (0 ∈ V → ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)))
8987, 88ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))
9086, 89pm3.2i 473 . . . . . . . . . . . . 13 (((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)))
91 dff1o3 6621 . . . . . . . . . . . . . . . 16 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun 𝑈))
9291simprbi 499 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑈)
93 imain 6439 . . . . . . . . . . . . . . 15 (Fun 𝑈 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))))
941, 92, 933syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))))
95 fzdisj 12935 . . . . . . . . . . . . . . . . 17 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
9642, 95syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
9796imaeq2d 5929 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = (𝑈 “ ∅))
98 ima0 5945 . . . . . . . . . . . . . . 15 (𝑈 “ ∅) = ∅
9997, 98syl6eq 2872 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ∅)
10094, 99eqtr3d 2858 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅)
101 fnun 6463 . . . . . . . . . . . . 13 (((((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))) ∧ ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
10290, 100, 101sylancr 589 . . . . . . . . . . . 12 (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
103 elfzuz 12905 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (ℤ‘1))
10416, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ (ℤ‘1))
10557, 104eqeltrd 2913 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘1))
106 peano2zm 12026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
107 uzid 12259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℤ → (𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)))
108 peano2uz 12302 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)) → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
10940, 106, 107, 1084syl 19 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
11057, 109eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
111 peano2uz 12302 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 + 1) ∈ (ℤ‘(𝑀 − 1)))
112 uzss 12266 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 1) ∈ (ℤ‘(𝑀 − 1)) → (ℤ‘(𝑀 + 1)) ⊆ (ℤ‘(𝑀 − 1)))
113110, 111, 1123syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ (ℤ‘(𝑀 − 1)))
114 elfzuz3 12906 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑀))
115 eluzp1p1 12271 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 1) ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
11616, 114, 1153syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
1177, 116eqeltrrd 2914 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
118113, 117sseldd 3968 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘(𝑀 − 1)))
119 fzsplit2 12933 . . . . . . . . . . . . . . . . . 18 ((((𝑀 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
120105, 118, 119syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
12157oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑀 − 1) + 1)...𝑁) = (𝑀...𝑁))
122121uneq2d 4139 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
123120, 122eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
124123imaeq2d 5929 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))))
125 imaundi 6008 . . . . . . . . . . . . . . 15 (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁)))
126124, 125syl6eq 2872 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
127 f1ofo 6622 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁))
128 foima 6595 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁))
1291, 127, 1283syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁))
130126, 129eqtr3d 2858 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) = (1...𝑁))
131130fneq2d 6447 . . . . . . . . . . . 12 (𝜑 → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) ↔ (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁)))
132102, 131mpbid 234 . . . . . . . . . . 11 (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
133132adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
134 ovexd 7191 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (1...𝑁) ∈ V)
135 inidm 4195 . . . . . . . . . 10 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
136 eqidd 2822 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇𝑛) = (𝑇𝑛))
137100adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅)
138 fzss2 12948 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁))
139 imass2 5965 . . . . . . . . . . . . . . 15 ((𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁)))
140117, 138, 1393syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁)))
141140sselda 3967 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (𝑀...𝑁)))
142 fvun2 6755 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)) ∧ (((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
14386, 89, 142mp3an12 1447 . . . . . . . . . . . . 13 ((((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
144137, 141, 143syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
14587fvconst2 6966 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑈 “ (𝑀...𝑁)) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0)
146141, 145syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0)
147144, 146eqtrd 2856 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0)
148147adantr 483 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0)
14983, 133, 134, 134, 135, 136, 148ofval 7418 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 0))
15028, 149mpdan 685 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇f + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 0))
15130zcnd 12089 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℂ)
152151addid1d 10840 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑇𝑛) + 0) = (𝑇𝑛))
15328, 152syldan 593 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇𝑛) + 0) = (𝑇𝑛))
15481, 150, 1533eqtrd 2860 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = (𝑇𝑛))
155 breq1 5069 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (𝑦 < 𝑀𝑀 < 𝑀))
156 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (𝑦 + 1) = (𝑀 + 1))
157155, 156ifbieq2d 4492 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if(𝑀 < 𝑀, 𝑦, (𝑀 + 1)))
15841ltnrd 10774 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑀 < 𝑀)
159158iffalsed 4478 . . . . . . . . . . . . . 14 (𝜑 → if(𝑀 < 𝑀, 𝑦, (𝑀 + 1)) = (𝑀 + 1))
160157, 159sylan9eqr 2878 . . . . . . . . . . . . 13 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 + 1))
161160csbeq1d 3887 . . . . . . . . . . . 12 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑀 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
162 ovex 7189 . . . . . . . . . . . . 13 (𝑀 + 1) ∈ V
163 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 + 1) → (1...𝑗) = (1...(𝑀 + 1)))
164163imaeq2d 5929 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑀 + 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 + 1))))
165164xpeq1d 5584 . . . . . . . . . . . . . . 15 (𝑗 = (𝑀 + 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 + 1))) × {1}))
166 oveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (𝑗 + 1) = ((𝑀 + 1) + 1))
167166oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 + 1) → ((𝑗 + 1)...𝑁) = (((𝑀 + 1) + 1)...𝑁))
168167imaeq2d 5929 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑀 + 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
169168xpeq1d 5584 . . . . . . . . . . . . . . 15 (𝑗 = (𝑀 + 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))
170165, 169uneq12d 4140 . . . . . . . . . . . . . 14 (𝑗 = (𝑀 + 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))
171170oveq2d 7172 . . . . . . . . . . . . 13 (𝑗 = (𝑀 + 1) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
172162, 171csbie 3918 . . . . . . . . . . . 12 (𝑀 + 1) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))
173161, 172syl6eq 2872 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
174 fz1ssfz0 13004 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))
175174, 16sseldi 3965 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...(𝑁 − 1)))
176 ovexd 7191 . . . . . . . . . . 11 (𝜑 → (𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))) ∈ V)
17735, 173, 175, 176fvmptd 6775 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = (𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
178177fveq1d 6672 . . . . . . . . 9 (𝜑 → ((𝐹𝑀)‘𝑛) = ((𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛))
179178adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹𝑀)‘𝑛) = ((𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛))
180 fnconstg 6567 . . . . . . . . . . . . . . 15 (1 ∈ V → ((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))))
18184, 180ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1)))
182 fnconstg 6567 . . . . . . . . . . . . . . 15 (0 ∈ V → ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
18387, 182ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))
184181, 183pm3.2i 473 . . . . . . . . . . . . 13 (((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
185 imain 6439 . . . . . . . . . . . . . . . 16 (Fun 𝑈 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
1861, 92, 1853syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
187 peano2re 10813 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
18841, 187syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℝ)
189188ltp1d 11570 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) < ((𝑀 + 1) + 1))
190 fzdisj 12935 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) < ((𝑀 + 1) + 1) → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅)
191189, 190syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅)
192191imaeq2d 5929 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅))
193186, 192eqtr3d 2858 . . . . . . . . . . . . . 14 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅))
194193, 98syl6eq 2872 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅)
195 fnun 6463 . . . . . . . . . . . . 13 (((((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ∧ ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
196184, 194, 195sylancr 589 . . . . . . . . . . . 12 (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
197 fzsplit 12934 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
19822, 197syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
199198imaeq2d 5929 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))))
200 imaundi 6008 . . . . . . . . . . . . . . 15 (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
201199, 200syl6eq 2872 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
202201, 129eqtr3d 2858 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (1...𝑁))
203202fneq2d 6447 . . . . . . . . . . . 12 (𝜑 → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ↔ (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)))
204196, 203mpbid 234 . . . . . . . . . . 11 (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
205204adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
206194adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅)
207 fzss1 12947 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)))
208 imass2 5965 . . . . . . . . . . . . . . 15 ((𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1))))
209104, 207, 2083syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1))))
210209sselda 3967 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))))
211 fvun1 6754 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
212181, 183, 211mp3an12 1447 . . . . . . . . . . . . 13 ((((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
213206, 210, 212syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
21484fvconst2 6966 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1)
215210, 214syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1)
216213, 215eqtrd 2856 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1)
217216adantr 483 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1)
21883, 205, 134, 134, 135, 136, 217ofval 7418 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 1))
21928, 218mpdan 685 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇f + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 1))
220179, 219eqtrd 2856 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹𝑀)‘𝑛) = ((𝑇𝑛) + 1))
22134, 154, 2203netr4d 3093 . . . . . 6 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
222221ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
223 fzpr 12963 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
22416, 39, 2233syl 18 . . . . . . . 8 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
225224imaeq2d 5929 . . . . . . 7 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = (𝑈 “ {𝑀, (𝑀 + 1)}))
226 f1ofn 6616 . . . . . . . . 9 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁))
2271, 226syl 17 . . . . . . . 8 (𝜑𝑈 Fn (1...𝑁))
228 fnimapr 6747 . . . . . . . 8 ((𝑈 Fn (1...𝑁) ∧ 𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁)) → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
229227, 17, 22, 228syl3anc 1367 . . . . . . 7 (𝜑 → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
230225, 229eqtrd 2856 . . . . . 6 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
231230raleqdv 3415 . . . . 5 (𝜑 → (∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)))
232222, 231mpbid 234 . . . 4 (𝜑 → ∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
233 fvex 6683 . . . . 5 (𝑈𝑀) ∈ V
234 fvex 6683 . . . . 5 (𝑈‘(𝑀 + 1)) ∈ V
235 fveq2 6670 . . . . . 6 (𝑛 = (𝑈𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈𝑀)))
236 fveq2 6670 . . . . . 6 (𝑛 = (𝑈𝑀) → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘(𝑈𝑀)))
237235, 236neeq12d 3077 . . . . 5 (𝑛 = (𝑈𝑀) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀))))
238 fveq2 6670 . . . . . 6 (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))))
239 fveq2 6670 . . . . . 6 (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))
240238, 239neeq12d 3077 . . . . 5 (𝑛 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
241233, 234, 237, 240ralpr 4636 . . . 4 (∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
242232, 241sylib 220 . . 3 (𝜑 → (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
24341ltp1d 11570 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
24441, 243ltned 10776 . . . 4 (𝜑𝑀 ≠ (𝑀 + 1))
245 f1of1 6614 . . . . . . 7 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–1-1→(1...𝑁))
2461, 245syl 17 . . . . . 6 (𝜑𝑈:(1...𝑁)–1-1→(1...𝑁))
247 f1veqaeq 7015 . . . . . 6 ((𝑈:(1...𝑁)–1-1→(1...𝑁) ∧ (𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁))) → ((𝑈𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1)))
248246, 17, 22, 247syl12anc 834 . . . . 5 (𝜑 → ((𝑈𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1)))
249248necon3d 3037 . . . 4 (𝜑 → (𝑀 ≠ (𝑀 + 1) → (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1))))
250244, 249mpd 15 . . 3 (𝜑 → (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))
251237anbi1d 631 . . . . 5 (𝑛 = (𝑈𝑀) → ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚))))
252 neeq1 3078 . . . . 5 (𝑛 = (𝑈𝑀) → (𝑛𝑚 ↔ (𝑈𝑀) ≠ 𝑚))
253251, 252anbi12d 632 . . . 4 (𝑛 = (𝑈𝑀) → (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ (𝑈𝑀) ≠ 𝑚)))
254 fveq2 6670 . . . . . . 7 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑚) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))))
255 fveq2 6670 . . . . . . 7 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹𝑀)‘𝑚) = ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))
256254, 255neeq12d 3077 . . . . . 6 (𝑚 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
257256anbi2d 630 . . . . 5 (𝑚 = (𝑈‘(𝑀 + 1)) → ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))))
258 neeq2 3079 . . . . 5 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝑈𝑀) ≠ 𝑚 ↔ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1))))
259257, 258anbi12d 632 . . . 4 (𝑚 = (𝑈‘(𝑀 + 1)) → (((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ (𝑈𝑀) ≠ 𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))))
260253, 259rspc2ev 3635 . . 3 (((𝑈𝑀) ∈ (1...𝑁) ∧ (𝑈‘(𝑀 + 1)) ∈ (1...𝑁) ∧ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))) → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
26118, 23, 242, 250, 260syl112anc 1370 . 2 (𝜑 → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
262 dfrex2 3239 . . 3 (∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
263 fveq2 6670 . . . . . 6 (𝑛 = 𝑚 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘𝑚))
264 fveq2 6670 . . . . . 6 (𝑛 = 𝑚 → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘𝑚))
265263, 264neeq12d 3077 . . . . 5 (𝑛 = 𝑚 → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)))
266265rmo4 3721 . . . 4 (∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
267 dfral2 3237 . . . . . 6 (∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
268 df-ne 3017 . . . . . . . . 9 (𝑛𝑚 ↔ ¬ 𝑛 = 𝑚)
269268anbi2i 624 . . . . . . . 8 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚))
270 annim 406 . . . . . . . 8 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
271269, 270bitri 277 . . . . . . 7 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
272271rexbii 3247 . . . . . 6 (∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
273267, 272xchbinxr 337 . . . . 5 (∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
274273ralbii 3165 . . . 4 (∀𝑛 ∈ (1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
275266, 274bitri 277 . . 3 (∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
276262, 275xchbinxr 337 . 2 (∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
277261, 276sylib 220 1 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  ∃*wrmo 3141  Vcvv 3494  csb 3883  cun 3934  cin 3935  wss 3936  c0 4291  ifcif 4467  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  ran crn 5556  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cmin 10870  cn 11638  cz 11982  cuz 12244  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894
This theorem is referenced by:  poimirlem8  34915  poimirlem18  34925  poimirlem21  34928  poimirlem22  34929
  Copyright terms: Public domain W3C validator