MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtt1 Structured version   Visualization version   GIF version

Theorem ordtt1 23408
Description: The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtt1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre)

Proof of Theorem ordtt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttop 23229 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Top)
2 snssi 4833 . . . . . . . 8 (𝑥 ∈ dom 𝑅 → {𝑥} ⊆ dom 𝑅)
32adantl 481 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ⊆ dom 𝑅)
4 sseqin2 4244 . . . . . . 7 ({𝑥} ⊆ dom 𝑅 ↔ (dom 𝑅 ∩ {𝑥}) = {𝑥})
53, 4sylib 218 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑥})
6 velsn 4664 . . . . . . . 8 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
7 eqid 2740 . . . . . . . . . . . . 13 dom 𝑅 = dom 𝑅
87psref 18644 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
98adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → 𝑥𝑅𝑥)
109, 9jca 511 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑥𝑥𝑅𝑥))
11 breq2 5170 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
12 breq1 5169 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
1311, 12anbi12d 631 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥𝑥𝑅𝑥)))
1410, 13syl5ibrcom 247 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
15 psasym 18646 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)
1615equcomd 2018 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥)
17163expib 1122 . . . . . . . . . 10 (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥))
1817ad2antrr 725 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥))
1914, 18impbid 212 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
206, 19bitrid 283 . . . . . . 7 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 ∈ {𝑥} ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
2120rabbi2dva 4247 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)})
225, 21eqtr3d 2782 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)})
237ordtcld3 23228 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅)))
24233anidm23 1421 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅)))
2522, 24eqeltrd 2844 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
2625ralrimiva 3152 . . 3 (𝑅 ∈ PosetRel → ∀𝑥 ∈ dom 𝑅{𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
277ordttopon 23222 . . . 4 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
28 toponuni 22941 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → dom 𝑅 = (ordTop‘𝑅))
2927, 28syl 17 . . 3 (𝑅 ∈ PosetRel → dom 𝑅 = (ordTop‘𝑅))
3026, 29raleqtrdv 3336 . 2 (𝑅 ∈ PosetRel → ∀𝑥 (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
31 eqid 2740 . . 3 (ordTop‘𝑅) = (ordTop‘𝑅)
3231ist1 23350 . 2 ((ordTop‘𝑅) ∈ Fre ↔ ((ordTop‘𝑅) ∈ Top ∧ ∀𝑥 (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅))))
331, 30, 32sylanbrc 582 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cin 3975  wss 3976  {csn 4648   cuni 4931   class class class wbr 5166  dom cdm 5700  cfv 6573  ordTopcordt 17559  PosetRelcps 18634  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  Frect1 23336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-ordt 17561  df-ps 18636  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-t1 23343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator