MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtt1 Structured version   Visualization version   GIF version

Theorem ordtt1 22438
Description: The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtt1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre)

Proof of Theorem ordtt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttop 22259 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Top)
2 snssi 4738 . . . . . . . 8 (𝑥 ∈ dom 𝑅 → {𝑥} ⊆ dom 𝑅)
32adantl 481 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ⊆ dom 𝑅)
4 sseqin2 4146 . . . . . . 7 ({𝑥} ⊆ dom 𝑅 ↔ (dom 𝑅 ∩ {𝑥}) = {𝑥})
53, 4sylib 217 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑥})
6 velsn 4574 . . . . . . . 8 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
7 eqid 2738 . . . . . . . . . . . . 13 dom 𝑅 = dom 𝑅
87psref 18207 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
98adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → 𝑥𝑅𝑥)
109, 9jca 511 . . . . . . . . . 10 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑥𝑥𝑅𝑥))
11 breq2 5074 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
12 breq1 5073 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
1311, 12anbi12d 630 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥𝑥𝑅𝑥)))
1410, 13syl5ibrcom 246 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
15 psasym 18209 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)
1615equcomd 2023 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥)
17163expib 1120 . . . . . . . . . 10 (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥))
1817ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑦 = 𝑥))
1914, 18impbid 211 . . . . . . . 8 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
206, 19syl5bb 282 . . . . . . 7 (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 ∈ {𝑥} ↔ (𝑥𝑅𝑦𝑦𝑅𝑥)))
2120rabbi2dva 4148 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)})
225, 21eqtr3d 2780 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)})
237ordtcld3 22258 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅)))
24233anidm23 1419 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅)))
2522, 24eqeltrd 2839 . . . 4 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
2625ralrimiva 3107 . . 3 (𝑅 ∈ PosetRel → ∀𝑥 ∈ dom 𝑅{𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
277ordttopon 22252 . . . . 5 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
28 toponuni 21971 . . . . 5 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → dom 𝑅 = (ordTop‘𝑅))
2927, 28syl 17 . . . 4 (𝑅 ∈ PosetRel → dom 𝑅 = (ordTop‘𝑅))
3029raleqdv 3339 . . 3 (𝑅 ∈ PosetRel → (∀𝑥 ∈ dom 𝑅{𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ∀𝑥 (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅))))
3126, 30mpbid 231 . 2 (𝑅 ∈ PosetRel → ∀𝑥 (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
32 eqid 2738 . . 3 (ordTop‘𝑅) = (ordTop‘𝑅)
3332ist1 22380 . 2 ((ordTop‘𝑅) ∈ Fre ↔ ((ordTop‘𝑅) ∈ Top ∧ ∀𝑥 (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅))))
341, 31, 33sylanbrc 582 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  dom cdm 5580  cfv 6418  ordTopcordt 17127  PosetRelcps 18197  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  Frect1 22366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-ordt 17129  df-ps 18199  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-t1 22373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator