Step | Hyp | Ref
| Expression |
1 | | ordttop 22351 |
. 2
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
Top) |
2 | | snssi 4741 |
. . . . . . . 8
⊢ (𝑥 ∈ dom 𝑅 → {𝑥} ⊆ dom 𝑅) |
3 | 2 | adantl 482 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ⊆ dom 𝑅) |
4 | | sseqin2 4149 |
. . . . . . 7
⊢ ({𝑥} ⊆ dom 𝑅 ↔ (dom 𝑅 ∩ {𝑥}) = {𝑥}) |
5 | 3, 4 | sylib 217 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑥}) |
6 | | velsn 4577 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
7 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ dom 𝑅 = dom 𝑅 |
8 | 7 | psref 18292 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
9 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
10 | 9, 9 | jca 512 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥)) |
11 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑥)) |
12 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑥)) |
13 | 11, 12 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥))) |
14 | 10, 13 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
15 | | psasym 18294 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) |
16 | 15 | equcomd 2022 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑦 = 𝑥) |
17 | 16 | 3expib 1121 |
. . . . . . . . . 10
⊢ (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑦 = 𝑥)) |
18 | 17 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑦 = 𝑥)) |
19 | 14, 18 | impbid 211 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 = 𝑥 ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
20 | 6, 19 | bitrid 282 |
. . . . . . 7
⊢ (((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝑦 ∈ {𝑥} ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
21 | 20 | rabbi2dva 4151 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → (dom 𝑅 ∩ {𝑥}) = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)}) |
22 | 5, 21 | eqtr3d 2780 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} = {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)}) |
23 | 7 | ordtcld3 22350 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅))) |
24 | 23 | 3anidm23 1420 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)} ∈ (Clsd‘(ordTop‘𝑅))) |
25 | 22, 24 | eqeltrd 2839 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
26 | 25 | ralrimiva 3103 |
. . 3
⊢ (𝑅 ∈ PosetRel →
∀𝑥 ∈ dom 𝑅{𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
27 | 7 | ordttopon 22344 |
. . . . 5
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
(TopOn‘dom 𝑅)) |
28 | | toponuni 22063 |
. . . . 5
⊢
((ordTop‘𝑅)
∈ (TopOn‘dom 𝑅)
→ dom 𝑅 = ∪ (ordTop‘𝑅)) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (𝑅 ∈ PosetRel → dom
𝑅 = ∪ (ordTop‘𝑅)) |
30 | 29 | raleqdv 3348 |
. . 3
⊢ (𝑅 ∈ PosetRel →
(∀𝑥 ∈ dom 𝑅{𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ∀𝑥 ∈ ∪ (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅)))) |
31 | 26, 30 | mpbid 231 |
. 2
⊢ (𝑅 ∈ PosetRel →
∀𝑥 ∈ ∪ (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
32 | | eqid 2738 |
. . 3
⊢ ∪ (ordTop‘𝑅) = ∪
(ordTop‘𝑅) |
33 | 32 | ist1 22472 |
. 2
⊢
((ordTop‘𝑅)
∈ Fre ↔ ((ordTop‘𝑅) ∈ Top ∧ ∀𝑥 ∈ ∪ (ordTop‘𝑅){𝑥} ∈ (Clsd‘(ordTop‘𝑅)))) |
34 | 1, 31, 33 | sylanbrc 583 |
1
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
Fre) |