![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu3 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
sigaclcu3.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
sigaclcu3.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) |
sigaclcu3.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
sigaclcu3 | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
2 | 1 | iuneq1d 5017 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ℕ 𝐴) |
3 | sigaclcu3.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
5 | sigaclcu3.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ 𝑆) | |
6 | 5 | ralrimiva 3140 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
8 | 1 | raleqdv 3319 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → (∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆)) |
9 | 7, 8 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
10 | sigaclcu2 33648 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) | |
11 | 4, 9, 10 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
12 | 2, 11 | eqeltrd 2827 | . 2 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑁 = (1..^𝑀)) | |
14 | 13 | iuneq1d 5017 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ (1..^𝑀)𝐴) |
15 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑆 ∈ ∪ ran sigAlgebra) |
16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
17 | 13 | raleqdv 3319 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → (∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆)) |
18 | 16, 17 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) |
19 | sigaclfu2 33649 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) | |
20 | 15, 18, 19 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) |
21 | 14, 20 | eqeltrd 2827 | . 2 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
22 | sigaclcu3.2 | . 2 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) | |
23 | 12, 21, 22 | mpjaodan 955 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∪ cuni 4902 ∪ ciun 4990 ran crn 5670 (class class class)co 7405 1c1 11113 ℕcn 12216 ..^cfzo 13633 sigAlgebracsiga 33636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-siga 33637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |