Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu3 Structured version   Visualization version   GIF version

Theorem sigaclcu3 30701
Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017.)
Hypotheses
Ref Expression
sigaclcu3.1 (𝜑𝑆 ran sigAlgebra)
sigaclcu3.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀)))
sigaclcu3.3 ((𝜑𝑘𝑁) → 𝐴𝑆)
Assertion
Ref Expression
sigaclcu3 (𝜑 𝑘𝑁 𝐴𝑆)
Distinct variable groups:   𝑆,𝑘   𝑘,𝑁   𝑘,𝑀   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclcu3
StepHypRef Expression
1 simpr 478 . . . 4 ((𝜑𝑁 = ℕ) → 𝑁 = ℕ)
21iuneq1d 4735 . . 3 ((𝜑𝑁 = ℕ) → 𝑘𝑁 𝐴 = 𝑘 ∈ ℕ 𝐴)
3 sigaclcu3.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
43adantr 473 . . . 4 ((𝜑𝑁 = ℕ) → 𝑆 ran sigAlgebra)
5 sigaclcu3.3 . . . . . . 7 ((𝜑𝑘𝑁) → 𝐴𝑆)
65ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑘𝑁 𝐴𝑆)
76adantr 473 . . . . 5 ((𝜑𝑁 = ℕ) → ∀𝑘𝑁 𝐴𝑆)
81raleqdv 3327 . . . . 5 ((𝜑𝑁 = ℕ) → (∀𝑘𝑁 𝐴𝑆 ↔ ∀𝑘 ∈ ℕ 𝐴𝑆))
97, 8mpbid 224 . . . 4 ((𝜑𝑁 = ℕ) → ∀𝑘 ∈ ℕ 𝐴𝑆)
10 sigaclcu2 30699 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
114, 9, 10syl2anc 580 . . 3 ((𝜑𝑁 = ℕ) → 𝑘 ∈ ℕ 𝐴𝑆)
122, 11eqeltrd 2878 . 2 ((𝜑𝑁 = ℕ) → 𝑘𝑁 𝐴𝑆)
13 simpr 478 . . . 4 ((𝜑𝑁 = (1..^𝑀)) → 𝑁 = (1..^𝑀))
1413iuneq1d 4735 . . 3 ((𝜑𝑁 = (1..^𝑀)) → 𝑘𝑁 𝐴 = 𝑘 ∈ (1..^𝑀)𝐴)
153adantr 473 . . . 4 ((𝜑𝑁 = (1..^𝑀)) → 𝑆 ran sigAlgebra)
166adantr 473 . . . . 5 ((𝜑𝑁 = (1..^𝑀)) → ∀𝑘𝑁 𝐴𝑆)
1713raleqdv 3327 . . . . 5 ((𝜑𝑁 = (1..^𝑀)) → (∀𝑘𝑁 𝐴𝑆 ↔ ∀𝑘 ∈ (1..^𝑀)𝐴𝑆))
1816, 17mpbid 224 . . . 4 ((𝜑𝑁 = (1..^𝑀)) → ∀𝑘 ∈ (1..^𝑀)𝐴𝑆)
19 sigaclfu2 30700 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑀)𝐴𝑆) → 𝑘 ∈ (1..^𝑀)𝐴𝑆)
2015, 18, 19syl2anc 580 . . 3 ((𝜑𝑁 = (1..^𝑀)) → 𝑘 ∈ (1..^𝑀)𝐴𝑆)
2114, 20eqeltrd 2878 . 2 ((𝜑𝑁 = (1..^𝑀)) → 𝑘𝑁 𝐴𝑆)
22 sigaclcu3.2 . 2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀)))
2312, 21, 22mpjaodan 982 1 (𝜑 𝑘𝑁 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157  wral 3089   cuni 4628   ciun 4710  ran crn 5313  (class class class)co 6878  1c1 10225  cn 11312  ..^cfzo 12720  sigAlgebracsiga 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-card 9051  df-acn 9054  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-siga 30687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator