MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Visualization version   GIF version

Theorem znf1o 20299
Description: The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y 𝑌 = (ℤ/nℤ‘𝑁)
znf1o.b 𝐵 = (Base‘𝑌)
znf1o.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znf1o.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
Assertion
Ref Expression
znf1o (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)

Proof of Theorem znf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20292 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 18949 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
4 eqid 2778 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
54zrhrhm 20260 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
6 zringbas 20224 . . . . . . 7 ℤ = (Base‘ℤring)
7 znf1o.b . . . . . . 7 𝐵 = (Base‘𝑌)
86, 7rhmf 19119 . . . . . 6 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶𝐵)
92, 3, 5, 84syl 19 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ⟶𝐵)
10 znf1o.w . . . . . 6 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
11 sseq1 3845 . . . . . . 7 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
12 sseq1 3845 . . . . . . 7 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
13 ssid 3842 . . . . . . 7 ℤ ⊆ ℤ
14 elfzoelz 12793 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
1514ssriv 3825 . . . . . . 7 (0..^𝑁) ⊆ ℤ
1611, 12, 13, 15keephyp 4376 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
1710, 16eqsstri 3854 . . . . 5 𝑊 ⊆ ℤ
18 fssres 6322 . . . . 5 (((ℤRHom‘𝑌):ℤ⟶𝐵𝑊 ⊆ ℤ) → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
199, 17, 18sylancl 580 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
20 znf1o.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
2120feq1i 6284 . . . 4 (𝐹:𝑊𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
2219, 21sylibr 226 . . 3 (𝑁 ∈ ℕ0𝐹:𝑊𝐵)
2320fveq1i 6449 . . . . . . . 8 (𝐹𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥)
24 fvres 6467 . . . . . . . . 9 (𝑥𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2524ad2antrl 718 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2623, 25syl5eq 2826 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2720fveq1i 6449 . . . . . . . 8 (𝐹𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦)
28 fvres 6467 . . . . . . . . 9 (𝑦𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
2928ad2antll 719 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3027, 29syl5eq 2826 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3126, 30eqeq12d 2793 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦)))
32 simpl 476 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ0)
33 simprl 761 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
3417, 33sseldi 3819 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
35 simprr 763 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
3617, 35sseldi 3819 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
371, 4zndvds 20297 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
3832, 34, 36, 37syl3anc 1439 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
39 elnn0 11648 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
40 simpl 476 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ)
41 simprl 761 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
4217, 41sseldi 3819 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
43 simprr 763 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
4417, 43sseldi 3819 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
45 moddvds 15402 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4640, 42, 44, 45syl3anc 1439 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4742zred 11838 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℝ)
48 nnrp 12154 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4948adantr 474 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℝ+)
50 nnne0 11414 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
51 ifnefalse 4319 . . . . . . . . . . . . . . . 16 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5310, 52syl5eq 2826 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁))
5453adantr 474 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑊 = (0..^𝑁))
5541, 54eleqtrd 2861 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ (0..^𝑁))
56 elfzole1 12801 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥)
5755, 56syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑥)
58 elfzolt2 12802 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁)
5955, 58syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 < 𝑁)
60 modid 13018 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥)
6147, 49, 57, 59, 60syl22anc 829 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑥 mod 𝑁) = 𝑥)
6244zred 11838 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℝ)
6343, 54eleqtrd 2861 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ (0..^𝑁))
64 elfzole1 12801 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦)
6563, 64syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑦)
66 elfzolt2 12802 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁)
6763, 66syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 < 𝑁)
68 modid 13018 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
6962, 49, 65, 67, 68syl22anc 829 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑦 mod 𝑁) = 𝑦)
7061, 69eqeq12d 2793 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦))
7146, 70bitr3d 273 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
72 simpl 476 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 = 0)
7372breq1d 4898 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
74 id 22 . . . . . . . . . . . . 13 (𝑁 = 0 → 𝑁 = 0)
75 0nn0 11663 . . . . . . . . . . . . 13 0 ∈ ℕ0
7674, 75syl6eqel 2867 . . . . . . . . . . . 12 (𝑁 = 0 → 𝑁 ∈ ℕ0)
7776, 34sylan 575 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
7876, 36sylan 575 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
7977, 78zsubcld 11843 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥𝑦) ∈ ℤ)
80 0dvds 15413 . . . . . . . . . 10 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8179, 80syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8277zcnd 11839 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℂ)
8378zcnd 11839 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℂ)
8482, 83subeq0ad 10746 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
8573, 81, 843bitrd 297 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8671, 85jaoian 942 . . . . . . 7 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8739, 86sylanb 576 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8831, 38, 873bitrd 297 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
8988biimpd 221 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
9089ralrimivva 3153 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
91 dff13 6786 . . 3 (𝐹:𝑊1-1𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
9222, 90, 91sylanbrc 578 . 2 (𝑁 ∈ ℕ0𝐹:𝑊1-1𝐵)
93 zmodfzo 13016 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9493ancoms 452 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9553adantr 474 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁))
9694, 95eleqtrrd 2862 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊)
97 zre 11736 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
98 modabs2 13027 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
9997, 48, 98syl2anr 590 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
100 simpl 476 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ)
10115, 94sseldi 3819 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ)
102 simpr 479 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
103 moddvds 15402 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
104100, 101, 102, 103syl3anc 1439 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
10599, 104mpbid 224 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))
106 nnnn0 11654 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
107106adantr 474 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ0)
1081, 4zndvds 20297 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
109107, 101, 102, 108syl3anc 1439 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
110105, 109mpbird 249 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧))
111110eqcomd 2784 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
112 fveq2 6448 . . . . . . . . . . 11 (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
113112rspceeqv 3529 . . . . . . . . . 10 (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
11496, 111, 113syl2anc 579 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
115 iftrue 4313 . . . . . . . . . . . . 13 (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ)
116115eleq2d 2845 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ))
117116biimpar 471 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)))
118117, 10syl6eleqr 2870 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧𝑊)
119 eqidd 2779 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧))
120 fveq2 6448 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧))
121120rspceeqv 3529 . . . . . . . . . 10 ((𝑧𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
122118, 119, 121syl2anc 579 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
123114, 122jaoian 942 . . . . . . . 8 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12439, 123sylanb 576 . . . . . . 7 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12527, 28syl5eq 2826 . . . . . . . . 9 (𝑦𝑊 → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
126125eqeq2d 2788 . . . . . . . 8 (𝑦𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)))
127126rexbiia 3223 . . . . . . 7 (∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
128124, 127sylibr 226 . . . . . 6 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
129128ralrimiva 3148 . . . . 5 (𝑁 ∈ ℕ0 → ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
1301, 7, 4znzrhfo 20295 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto𝐵)
131 fofn 6370 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → (ℤRHom‘𝑌) Fn ℤ)
132 eqeq1 2782 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
133132rexbidv 3237 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
134133ralrn 6628 . . . . . 6 ((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
135130, 131, 1343syl 18 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
136129, 135mpbird 249 . . . 4 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦))
137 forn 6371 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → ran (ℤRHom‘𝑌) = 𝐵)
138130, 137syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = 𝐵)
139138raleqdv 3340 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
140136, 139mpbid 224 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦))
141 dffo3 6640 . . 3 (𝐹:𝑊onto𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
14222, 140, 141sylanbrc 578 . 2 (𝑁 ∈ ℕ0𝐹:𝑊onto𝐵)
143 df-f1o 6144 . 2 (𝐹:𝑊1-1-onto𝐵 ↔ (𝐹:𝑊1-1𝐵𝐹:𝑊onto𝐵))
14492, 142, 143sylanbrc 578 1 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  wss 3792  ifcif 4307   class class class wbr 4888  ran crn 5358  cres 5359   Fn wfn 6132  wf 6133  1-1wf1 6134  ontowfo 6135  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274   < clt 10413  cle 10414  cmin 10608  cn 11378  0cn0 11646  cz 11732  +crp 12141  ..^cfzo 12788   mod cmo 12991  cdvds 15391  Basecbs 16259  Ringcrg 18938  CRingccrg 18939   RingHom crh 19105  ringzring 20218  ℤRHomczrh 20248  ℤ/nczn 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-ec 8030  df-qs 8034  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-rp 12142  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-dvds 15392  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-0g 16492  df-imas 16558  df-qus 16559  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-grp 17816  df-minusg 17817  df-sbg 17818  df-mulg 17932  df-subg 17979  df-nsg 17980  df-eqg 17981  df-ghm 18046  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-cring 18941  df-oppr 19014  df-dvdsr 19032  df-rnghom 19108  df-subrg 19174  df-lmod 19261  df-lss 19329  df-lsp 19371  df-sra 19573  df-rgmod 19574  df-lidl 19575  df-rsp 19576  df-2idl 19633  df-cnfld 20147  df-zring 20219  df-zrh 20252  df-zn 20255
This theorem is referenced by:  zzngim  20300  znleval  20302  zntoslem  20304  znhash  20306  znunithash  20312  dchrisumlem1  25634
  Copyright terms: Public domain W3C validator