MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Visualization version   GIF version

Theorem znf1o 20690
Description: The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y 𝑌 = (ℤ/nℤ‘𝑁)
znf1o.b 𝐵 = (Base‘𝑌)
znf1o.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znf1o.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
Assertion
Ref Expression
znf1o (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)

Proof of Theorem znf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20683 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 19300 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
4 eqid 2819 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
54zrhrhm 20651 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
6 zringbas 20615 . . . . . . 7 ℤ = (Base‘ℤring)
7 znf1o.b . . . . . . 7 𝐵 = (Base‘𝑌)
86, 7rhmf 19470 . . . . . 6 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶𝐵)
92, 3, 5, 84syl 19 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ⟶𝐵)
10 znf1o.w . . . . . 6 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
11 sseq1 3990 . . . . . . 7 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
12 sseq1 3990 . . . . . . 7 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
13 ssid 3987 . . . . . . 7 ℤ ⊆ ℤ
14 elfzoelz 13030 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
1514ssriv 3969 . . . . . . 7 (0..^𝑁) ⊆ ℤ
1611, 12, 13, 15keephyp 4534 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
1710, 16eqsstri 3999 . . . . 5 𝑊 ⊆ ℤ
18 fssres 6537 . . . . 5 (((ℤRHom‘𝑌):ℤ⟶𝐵𝑊 ⊆ ℤ) → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
199, 17, 18sylancl 588 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
20 znf1o.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
2120feq1i 6498 . . . 4 (𝐹:𝑊𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
2219, 21sylibr 236 . . 3 (𝑁 ∈ ℕ0𝐹:𝑊𝐵)
2320fveq1i 6664 . . . . . . . 8 (𝐹𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥)
24 fvres 6682 . . . . . . . . 9 (𝑥𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2524ad2antrl 726 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2623, 25syl5eq 2866 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2720fveq1i 6664 . . . . . . . 8 (𝐹𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦)
28 fvres 6682 . . . . . . . . 9 (𝑦𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
2928ad2antll 727 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3027, 29syl5eq 2866 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3126, 30eqeq12d 2835 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦)))
32 simpl 485 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ0)
33 simprl 769 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
3417, 33sseldi 3963 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
35 simprr 771 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
3617, 35sseldi 3963 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
371, 4zndvds 20688 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
3832, 34, 36, 37syl3anc 1366 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
39 elnn0 11891 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
40 simpl 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ)
41 simprl 769 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
4217, 41sseldi 3963 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
43 simprr 771 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
4417, 43sseldi 3963 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
45 moddvds 15610 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4640, 42, 44, 45syl3anc 1366 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4742zred 12079 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℝ)
48 nnrp 12392 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4948adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℝ+)
50 nnne0 11663 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
51 ifnefalse 4477 . . . . . . . . . . . . . . . 16 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5310, 52syl5eq 2866 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁))
5453adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑊 = (0..^𝑁))
5541, 54eleqtrd 2913 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ (0..^𝑁))
56 elfzole1 13038 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥)
5755, 56syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑥)
58 elfzolt2 13039 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁)
5955, 58syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 < 𝑁)
60 modid 13256 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥)
6147, 49, 57, 59, 60syl22anc 836 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑥 mod 𝑁) = 𝑥)
6244zred 12079 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℝ)
6343, 54eleqtrd 2913 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ (0..^𝑁))
64 elfzole1 13038 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦)
6563, 64syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑦)
66 elfzolt2 13039 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁)
6763, 66syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 < 𝑁)
68 modid 13256 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
6962, 49, 65, 67, 68syl22anc 836 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑦 mod 𝑁) = 𝑦)
7061, 69eqeq12d 2835 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦))
7146, 70bitr3d 283 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
72 simpl 485 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 = 0)
7372breq1d 5067 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
74 id 22 . . . . . . . . . . . . 13 (𝑁 = 0 → 𝑁 = 0)
75 0nn0 11904 . . . . . . . . . . . . 13 0 ∈ ℕ0
7674, 75syl6eqel 2919 . . . . . . . . . . . 12 (𝑁 = 0 → 𝑁 ∈ ℕ0)
7776, 34sylan 582 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
7876, 36sylan 582 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
7977, 78zsubcld 12084 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥𝑦) ∈ ℤ)
80 0dvds 15622 . . . . . . . . . 10 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8179, 80syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8277zcnd 12080 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℂ)
8378zcnd 12080 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℂ)
8482, 83subeq0ad 10999 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
8573, 81, 843bitrd 307 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8671, 85jaoian 953 . . . . . . 7 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8739, 86sylanb 583 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8831, 38, 873bitrd 307 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
8988biimpd 231 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
9089ralrimivva 3189 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
91 dff13 7005 . . 3 (𝐹:𝑊1-1𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
9222, 90, 91sylanbrc 585 . 2 (𝑁 ∈ ℕ0𝐹:𝑊1-1𝐵)
93 zmodfzo 13254 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9493ancoms 461 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9553adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁))
9694, 95eleqtrrd 2914 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊)
97 zre 11977 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
98 modabs2 13265 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
9997, 48, 98syl2anr 598 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
100 simpl 485 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ)
10115, 94sseldi 3963 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ)
102 simpr 487 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
103 moddvds 15610 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
104100, 101, 102, 103syl3anc 1366 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
10599, 104mpbid 234 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))
106 nnnn0 11896 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
107106adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ0)
1081, 4zndvds 20688 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
109107, 101, 102, 108syl3anc 1366 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
110105, 109mpbird 259 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧))
111110eqcomd 2825 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
112 fveq2 6663 . . . . . . . . . . 11 (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
113112rspceeqv 3636 . . . . . . . . . 10 (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
11496, 111, 113syl2anc 586 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
115 iftrue 4471 . . . . . . . . . . . . 13 (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ)
116115eleq2d 2896 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ))
117116biimpar 480 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)))
118117, 10eleqtrrdi 2922 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧𝑊)
119 eqidd 2820 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧))
120 fveq2 6663 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧))
121120rspceeqv 3636 . . . . . . . . . 10 ((𝑧𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
122118, 119, 121syl2anc 586 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
123114, 122jaoian 953 . . . . . . . 8 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12439, 123sylanb 583 . . . . . . 7 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12527, 28syl5eq 2866 . . . . . . . . 9 (𝑦𝑊 → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
126125eqeq2d 2830 . . . . . . . 8 (𝑦𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)))
127126rexbiia 3244 . . . . . . 7 (∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
128124, 127sylibr 236 . . . . . 6 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
129128ralrimiva 3180 . . . . 5 (𝑁 ∈ ℕ0 → ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
1301, 7, 4znzrhfo 20686 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto𝐵)
131 fofn 6585 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → (ℤRHom‘𝑌) Fn ℤ)
132 eqeq1 2823 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
133132rexbidv 3295 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
134133ralrn 6847 . . . . . 6 ((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
135130, 131, 1343syl 18 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
136129, 135mpbird 259 . . . 4 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦))
137 forn 6586 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → ran (ℤRHom‘𝑌) = 𝐵)
138130, 137syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = 𝐵)
139138raleqdv 3414 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
140136, 139mpbid 234 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦))
141 dffo3 6861 . . 3 (𝐹:𝑊onto𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
14222, 140, 141sylanbrc 585 . 2 (𝑁 ∈ ℕ0𝐹:𝑊onto𝐵)
143 df-f1o 6355 . 2 (𝐹:𝑊1-1-onto𝐵 ↔ (𝐹:𝑊1-1𝐵𝐹:𝑊onto𝐵))
14492, 142, 143sylanbrc 585 1 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  wss 3934  ifcif 4465   class class class wbr 5057  ran crn 5549  cres 5550   Fn wfn 6343  wf 6344  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529   < clt 10667  cle 10668  cmin 10862  cn 11630  0cn0 11889  cz 11973  +crp 12381  ..^cfzo 13025   mod cmo 13229  cdvds 15599  Basecbs 16475  Ringcrg 19289  CRingccrg 19290   RingHom crh 19456  ringzring 20609  ℤRHomczrh 20639  ℤ/nczn 20642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-dvds 15600  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-rnghom 19459  df-subrg 19525  df-lmod 19628  df-lss 19696  df-lsp 19736  df-sra 19936  df-rgmod 19937  df-lidl 19938  df-rsp 19939  df-2idl 19997  df-cnfld 20538  df-zring 20610  df-zrh 20643  df-zn 20646
This theorem is referenced by:  zzngim  20691  znleval  20693  zntoslem  20695  znhash  20697  znunithash  20703  dchrisumlem1  26057
  Copyright terms: Public domain W3C validator