| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgpgp | Structured version Visualization version GIF version | ||
| Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| subgpgp | ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpprm 19579 | . . 3 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ) |
| 3 | eqid 2736 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 4 | 3 | subggrp 19117 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 6 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2736 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 8 | 6, 7 | ispgp 19578 | . . . . . 6 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 9 | 8 | simp3bi 1147 | . . . . 5 ⊢ (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 11 | 6 | subgss 19115 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | ssralv 4032 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 15 | eqid 2736 | . . . . . . . . . 10 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
| 16 | 3, 7, 15 | subgod 19556 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
| 17 | 16 | adantll 714 | . . . . . . . 8 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
| 18 | 17 | eqeq1d 2738 | . . . . . . 7 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 19 | 18 | rexbidv 3165 | . . . . . 6 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 20 | 19 | ralbidva 3162 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 21 | 14, 20 | sylibd 239 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 22 | 10, 21 | mpd 15 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
| 23 | 3 | subgbas 19118 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 22, 24 | raleqtrdv 3311 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
| 26 | eqid 2736 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 27 | 26, 15 | ispgp 19578 | . 2 ⊢ (𝑃 pGrp (𝐺 ↾s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺 ↾s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 28 | 2, 5, 25, 27 | syl3anbrc 1344 | 1 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℕ0cn0 12506 ↑cexp 14084 ℙcprime 16695 Basecbs 17233 ↾s cress 17256 Grpcgrp 18921 SubGrpcsubg 19108 odcod 19510 pGrp cpgp 19512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-od 19514 df-pgp 19516 |
| This theorem is referenced by: pgpfaclem1 20069 pgpfaclem3 20071 |
| Copyright terms: Public domain | W3C validator |