MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgpgp Structured version   Visualization version   GIF version

Theorem subgpgp 19559
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.)
Assertion
Ref Expression
subgpgp ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))

Proof of Theorem subgpgp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpprm 19555 . . 3 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
21adantr 479 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ)
3 eqid 2728 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 19091 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
54adantl 480 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2728 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2728 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
86, 7ispgp 19554 . . . . . 6 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
98simp3bi 1144 . . . . 5 (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
109adantr 479 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
116subgss 19089 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantl 480 . . . . . 6 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
13 ssralv 4050 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
1412, 13syl 17 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
15 eqid 2728 . . . . . . . . . 10 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
163, 7, 15subgod 19532 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1716adantll 712 . . . . . . . 8 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1817eqeq1d 2730 . . . . . . 7 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
1918rexbidv 3176 . . . . . 6 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2019ralbidva 3173 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2114, 20sylibd 238 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2210, 21mpd 15 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
233subgbas 19092 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2423adantl 480 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺s 𝑆)))
2524raleqdv 3323 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛) ↔ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2622, 25mpbid 231 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
27 eqid 2728 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2827, 15ispgp 19554 . 2 (𝑃 pGrp (𝐺s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
292, 5, 26, 28syl3anbrc 1340 1 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  wrex 3067  wss 3949   class class class wbr 5152  cfv 6553  (class class class)co 7426  0cn0 12510  cexp 14066  cprime 16649  Basecbs 17187  s cress 17216  Grpcgrp 18897  SubGrpcsubg 19082  odcod 19486   pGrp cpgp 19488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-seq 14007  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-mulg 19031  df-subg 19085  df-od 19490  df-pgp 19492
This theorem is referenced by:  pgpfaclem1  20045  pgpfaclem3  20047
  Copyright terms: Public domain W3C validator