![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgpgp | Structured version Visualization version GIF version |
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
subgpgp | ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpprm 19635 | . . 3 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ) |
3 | eqid 2740 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
4 | 3 | subggrp 19169 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ↾s 𝑆) ∈ Grp) |
6 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2740 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
8 | 6, 7 | ispgp 19634 | . . . . . 6 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
9 | 8 | simp3bi 1147 | . . . . 5 ⊢ (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
11 | 6 | subgss 19167 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
13 | ssralv 4077 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
15 | eqid 2740 | . . . . . . . . . 10 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
16 | 3, 7, 15 | subgod 19612 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
17 | 16 | adantll 713 | . . . . . . . 8 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
18 | 17 | eqeq1d 2742 | . . . . . . 7 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
19 | 18 | rexbidv 3185 | . . . . . 6 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
20 | 19 | ralbidva 3182 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
21 | 14, 20 | sylibd 239 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
22 | 10, 21 | mpd 15 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
23 | 3 | subgbas 19170 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
24 | 23 | adantl 481 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
25 | 22, 24 | raleqtrdv 3336 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
26 | eqid 2740 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
27 | 26, 15 | ispgp 19634 | . 2 ⊢ (𝑃 pGrp (𝐺 ↾s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺 ↾s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
28 | 2, 5, 25, 27 | syl3anbrc 1343 | 1 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℕ0cn0 12553 ↑cexp 14112 ℙcprime 16718 Basecbs 17258 ↾s cress 17287 Grpcgrp 18973 SubGrpcsubg 19160 odcod 19566 pGrp cpgp 19568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-od 19570 df-pgp 19572 |
This theorem is referenced by: pgpfaclem1 20125 pgpfaclem3 20127 |
Copyright terms: Public domain | W3C validator |