MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgpgp Structured version   Visualization version   GIF version

Theorem subgpgp 19515
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.)
Assertion
Ref Expression
subgpgp ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))

Proof of Theorem subgpgp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpprm 19511 . . 3 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
21adantr 480 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ)
3 eqid 2726 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 19054 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
54adantl 481 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2726 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2726 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
86, 7ispgp 19510 . . . . . 6 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
98simp3bi 1144 . . . . 5 (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
109adantr 480 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
116subgss 19052 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantl 481 . . . . . 6 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
13 ssralv 4045 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
1412, 13syl 17 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
15 eqid 2726 . . . . . . . . . 10 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
163, 7, 15subgod 19488 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1716adantll 711 . . . . . . . 8 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1817eqeq1d 2728 . . . . . . 7 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
1918rexbidv 3172 . . . . . 6 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2019ralbidva 3169 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2114, 20sylibd 238 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2210, 21mpd 15 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
233subgbas 19055 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2423adantl 481 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺s 𝑆)))
2524raleqdv 3319 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛) ↔ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2622, 25mpbid 231 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
27 eqid 2726 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2827, 15ispgp 19510 . 2 (𝑃 pGrp (𝐺s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
292, 5, 26, 28syl3anbrc 1340 1 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  wrex 3064  wss 3943   class class class wbr 5141  cfv 6536  (class class class)co 7404  0cn0 12473  cexp 14030  cprime 16613  Basecbs 17151  s cress 17180  Grpcgrp 18861  SubGrpcsubg 19045  odcod 19442   pGrp cpgp 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-seq 13970  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-mulg 18994  df-subg 19048  df-od 19446  df-pgp 19448
This theorem is referenced by:  pgpfaclem1  20001  pgpfaclem3  20003
  Copyright terms: Public domain W3C validator