![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgpgp | Structured version Visualization version GIF version |
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
subgpgp | ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpprm 19383 | . . 3 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ) |
3 | eqid 2733 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
4 | 3 | subggrp 18939 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 4 | adantl 483 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ↾s 𝑆) ∈ Grp) |
6 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2733 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
8 | 6, 7 | ispgp 19382 | . . . . . 6 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
9 | 8 | simp3bi 1148 | . . . . 5 ⊢ (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
10 | 9 | adantr 482 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
11 | 6 | subgss 18937 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | 11 | adantl 483 | . . . . . 6 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
13 | ssralv 4014 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
15 | eqid 2733 | . . . . . . . . . 10 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
16 | 3, 7, 15 | subgod 19360 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
17 | 16 | adantll 713 | . . . . . . . 8 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
18 | 17 | eqeq1d 2735 | . . . . . . 7 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
19 | 18 | rexbidv 3172 | . . . . . 6 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
20 | 19 | ralbidva 3169 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
21 | 14, 20 | sylibd 238 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
22 | 10, 21 | mpd 15 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
23 | 3 | subgbas 18940 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
24 | 23 | adantl 483 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
25 | 24 | raleqdv 3312 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
26 | 22, 25 | mpbid 231 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
27 | eqid 2733 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
28 | 27, 15 | ispgp 19382 | . 2 ⊢ (𝑃 pGrp (𝐺 ↾s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺 ↾s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
29 | 2, 5, 26, 28 | syl3anbrc 1344 | 1 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ⊆ wss 3914 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 ℕ0cn0 12421 ↑cexp 13976 ℙcprime 16555 Basecbs 17091 ↾s cress 17120 Grpcgrp 18756 SubGrpcsubg 18930 odcod 19314 pGrp cpgp 19316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-sup 9386 df-inf 9387 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-uz 12772 df-seq 13916 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-submnd 18610 df-grp 18759 df-minusg 18760 df-mulg 18881 df-subg 18933 df-od 19318 df-pgp 19320 |
This theorem is referenced by: pgpfaclem1 19868 pgpfaclem3 19870 |
Copyright terms: Public domain | W3C validator |