| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgpgp | Structured version Visualization version GIF version | ||
| Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| subgpgp | ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpprm 19530 | . . 3 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ) |
| 3 | eqid 2730 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 4 | 3 | subggrp 19068 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 8 | 6, 7 | ispgp 19529 | . . . . . 6 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 9 | 8 | simp3bi 1147 | . . . . 5 ⊢ (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 11 | 6 | subgss 19066 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | ssralv 4018 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 15 | eqid 2730 | . . . . . . . . . 10 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
| 16 | 3, 7, 15 | subgod 19507 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
| 17 | 16 | adantll 714 | . . . . . . . 8 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
| 18 | 17 | eqeq1d 2732 | . . . . . . 7 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 19 | 18 | rexbidv 3158 | . . . . . 6 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 20 | 19 | ralbidva 3155 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 21 | 14, 20 | sylibd 239 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 22 | 10, 21 | mpd 15 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
| 23 | 3 | subgbas 19069 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 22, 24 | raleqtrdv 3303 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
| 26 | eqid 2730 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 27 | 26, 15 | ispgp 19529 | . 2 ⊢ (𝑃 pGrp (𝐺 ↾s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺 ↾s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
| 28 | 2, 5, 25, 27 | syl3anbrc 1344 | 1 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 ↑cexp 14033 ℙcprime 16648 Basecbs 17186 ↾s cress 17207 Grpcgrp 18872 SubGrpcsubg 19059 odcod 19461 pGrp cpgp 19463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-od 19465 df-pgp 19467 |
| This theorem is referenced by: pgpfaclem1 20020 pgpfaclem3 20022 |
| Copyright terms: Public domain | W3C validator |