MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgpgp Structured version   Visualization version   GIF version

Theorem subgpgp 19519
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.)
Assertion
Ref Expression
subgpgp ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))

Proof of Theorem subgpgp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpprm 19515 . . 3 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
21adantr 480 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ)
3 eqid 2733 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 19052 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
54adantl 481 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2733 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2733 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
86, 7ispgp 19514 . . . . . 6 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
98simp3bi 1147 . . . . 5 (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
109adantr 480 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
116subgss 19050 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantl 481 . . . . . 6 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
13 ssralv 4000 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
1412, 13syl 17 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
15 eqid 2733 . . . . . . . . . 10 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
163, 7, 15subgod 19492 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1716adantll 714 . . . . . . . 8 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1817eqeq1d 2735 . . . . . . 7 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
1918rexbidv 3158 . . . . . 6 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2019ralbidva 3155 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2114, 20sylibd 239 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2210, 21mpd 15 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
233subgbas 19053 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2423adantl 481 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺s 𝑆)))
2522, 24raleqtrdv 3296 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
26 eqid 2733 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2726, 15ispgp 19514 . 2 (𝑃 pGrp (𝐺s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
282, 5, 25, 27syl3anbrc 1344 1 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   class class class wbr 5095  cfv 6489  (class class class)co 7355  0cn0 12391  cexp 13978  cprime 16592  Basecbs 17130  s cress 17151  Grpcgrp 18856  SubGrpcsubg 19043  odcod 19446   pGrp cpgp 19448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-seq 13919  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-mulg 18991  df-subg 19046  df-od 19450  df-pgp 19452
This theorem is referenced by:  pgpfaclem1  20005  pgpfaclem3  20007
  Copyright terms: Public domain W3C validator