MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgpgp Structured version   Visualization version   GIF version

Theorem subgpgp 19583
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.)
Assertion
Ref Expression
subgpgp ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))

Proof of Theorem subgpgp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpprm 19579 . . 3 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
21adantr 480 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ)
3 eqid 2736 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 19117 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
54adantl 481 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (𝐺s 𝑆) ∈ Grp)
6 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2736 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
86, 7ispgp 19578 . . . . . 6 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
98simp3bi 1147 . . . . 5 (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
109adantr 480 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
116subgss 19115 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantl 481 . . . . . 6 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
13 ssralv 4032 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
1412, 13syl 17 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
15 eqid 2736 . . . . . . . . . 10 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
163, 7, 15subgod 19556 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1716adantll 714 . . . . . . . 8 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺s 𝑆))‘𝑥))
1817eqeq1d 2738 . . . . . . 7 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
1918rexbidv 3165 . . . . . 6 (((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2019ralbidva 3162 . . . . 5 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2114, 20sylibd 239 . . . 4 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
2210, 21mpd 15 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑆𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
233subgbas 19118 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2423adantl 481 . . 3 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺s 𝑆)))
2522, 24raleqtrdv 3311 . 2 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛))
26 eqid 2736 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2726, 15ispgp 19578 . 2 (𝑃 pGrp (𝐺s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺s 𝑆))‘𝑥) = (𝑃𝑛)))
282, 5, 25, 27syl3anbrc 1344 1 ((𝑃 pGrp 𝐺𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cn0 12506  cexp 14084  cprime 16695  Basecbs 17233  s cress 17256  Grpcgrp 18921  SubGrpcsubg 19108  odcod 19510   pGrp cpgp 19512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-od 19514  df-pgp 19516
This theorem is referenced by:  pgpfaclem1  20069  pgpfaclem3  20071
  Copyright terms: Public domain W3C validator