Step | Hyp | Ref
| Expression |
1 | | subfacp1lem.a |
. . . . . . 7
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
2 | | fzfi 14023 |
. . . . . . . 8
⊢
(1...(𝑁 + 1)) ∈
Fin |
3 | | deranglem 35134 |
. . . . . . . 8
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
5 | 1, 4 | eqeltri 2840 |
. . . . . 6
⊢ 𝐴 ∈ Fin |
6 | | subfacp1lem3.b |
. . . . . . 7
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1)} |
7 | 6 | ssrab3 4105 |
. . . . . 6
⊢ 𝐵 ⊆ 𝐴 |
8 | | ssfi 9240 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
9 | 5, 7, 8 | mp2an 691 |
. . . . 5
⊢ 𝐵 ∈ Fin |
10 | 9 | elexi 3511 |
. . . 4
⊢ 𝐵 ∈ V |
11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
12 | | eqid 2740 |
. . . 4
⊢ (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)) = (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)) |
13 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
14 | | fveq1 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) |
15 | 14 | eqeq1d 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
16 | | fveq1 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) |
17 | 16 | eqeq1d 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) = 1 ↔ (𝑏‘𝑀) = 1)) |
18 | 15, 17 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) |
19 | 18, 6 | elrab2 3711 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) |
20 | 13, 19 | sylib 218 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) |
21 | 20 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
22 | | vex 3492 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
23 | | f1oeq1 6850 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
24 | | fveq1 6919 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
25 | 24 | neeq1d 3006 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
26 | 25 | ralbidv 3184 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
27 | 23, 26 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) |
28 | 22, 27, 1 | elab2 3698 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
29 | 21, 28 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
30 | 29 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
31 | | f1of1 6861 |
. . . . . . . 8
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
32 | | df-f1 6578 |
. . . . . . . . 9
⊢ (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡𝑏)) |
33 | 32 | simprbi 496 |
. . . . . . . 8
⊢ (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡𝑏) |
34 | 30, 31, 33 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡𝑏) |
35 | | f1ofn 6863 |
. . . . . . . . . . 11
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏 Fn (1...(𝑁 + 1))) |
36 | 30, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 Fn (1...(𝑁 + 1))) |
37 | | fnresdm 6699 |
. . . . . . . . . 10
⊢ (𝑏 Fn (1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))) = 𝑏) |
38 | | f1oeq1 6850 |
. . . . . . . . . 10
⊢ ((𝑏 ↾ (1...(𝑁 + 1))) = 𝑏 → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
40 | 30, 39 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
41 | | f1ofo 6869 |
. . . . . . . 8
⊢ ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
42 | 40, 41 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
43 | | ssun2 4202 |
. . . . . . . . . . . 12
⊢ {1, 𝑀} ⊆ (𝐾 ∪ {1, 𝑀}) |
44 | | derang.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
45 | | subfac.n |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
46 | | subfacp1lem1.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) |
47 | | subfacp1lem1.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
48 | | subfacp1lem1.x |
. . . . . . . . . . . . . 14
⊢ 𝑀 ∈ V |
49 | | subfacp1lem1.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
50 | 44, 45, 1, 46, 47, 48, 49 | subfacp1lem1 35147 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) |
51 | 50 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) |
52 | 43, 51 | sseqtrid 4061 |
. . . . . . . . . . 11
⊢ (𝜑 → {1, 𝑀} ⊆ (1...(𝑁 + 1))) |
53 | 52 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {1, 𝑀} ⊆ (1...(𝑁 + 1))) |
54 | 36, 53 | fnssresd 6704 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀}) |
55 | 20 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1)) |
56 | 55 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) |
57 | 48 | prid2 4788 |
. . . . . . . . . . . 12
⊢ 𝑀 ∈ {1, 𝑀} |
58 | 56, 57 | eqeltrdi 2852 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) ∈ {1, 𝑀}) |
59 | 55 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) = 1) |
60 | | 1ex 11286 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
61 | 60 | prid1 4787 |
. . . . . . . . . . . 12
⊢ 1 ∈
{1, 𝑀} |
62 | 59, 61 | eqeltrdi 2852 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ∈ {1, 𝑀}) |
63 | | fveq2 6920 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (𝑏‘𝑥) = (𝑏‘1)) |
64 | 63 | eleq1d 2829 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((𝑏‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘1) ∈ {1, 𝑀})) |
65 | | fveq2 6920 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑀 → (𝑏‘𝑥) = (𝑏‘𝑀)) |
66 | 65 | eleq1d 2829 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → ((𝑏‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘𝑀) ∈ {1, 𝑀})) |
67 | 60, 48, 64, 66 | ralpr 4725 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀} ↔ ((𝑏‘1) ∈ {1, 𝑀} ∧ (𝑏‘𝑀) ∈ {1, 𝑀})) |
68 | 58, 62, 67 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀}) |
69 | | fvres 6939 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑥) = (𝑏‘𝑥)) |
70 | 69 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘𝑥) ∈ {1, 𝑀})) |
71 | 70 | ralbiia 3097 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ ∀𝑥 ∈ {1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀}) |
72 | 68, 71 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀}) |
73 | | ffnfv 7153 |
. . . . . . . . 9
⊢ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀})) |
74 | 54, 72, 73 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀}) |
75 | | fveqeq2 6929 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) = 1 ↔ (𝑏‘𝑀) = 1)) |
76 | 75 | rspcev 3635 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ {1, 𝑀} ∧ (𝑏‘𝑀) = 1) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1) |
77 | 57, 59, 76 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1) |
78 | | fveqeq2 6929 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1 → ((𝑏‘𝑦) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
79 | 78 | rspcev 3635 |
. . . . . . . . . . 11
⊢ ((1
∈ {1, 𝑀} ∧ (𝑏‘1) = 𝑀) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀) |
80 | 61, 56, 79 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀) |
81 | | eqeq2 2752 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((𝑏‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 1)) |
82 | 81 | rexbidv 3185 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1)) |
83 | | eqeq2 2752 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → ((𝑏‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 𝑀)) |
84 | 83 | rexbidv 3185 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀)) |
85 | 60, 48, 82, 84 | ralpr 4725 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1 ∧ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀)) |
86 | 77, 80, 85 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) |
87 | | eqcom 2747 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥) |
88 | | fvres 6939 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑦) = (𝑏‘𝑦)) |
89 | 88 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 𝑥)) |
90 | 87, 89 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {1, 𝑀} → (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ (𝑏‘𝑦) = 𝑥)) |
91 | 90 | rexbiia 3098 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ {1,
𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) |
92 | 91 | ralbii 3099 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) |
93 | 86, 92 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦)) |
94 | | dffo3 7136 |
. . . . . . . 8
⊢ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦))) |
95 | 74, 93, 94 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀}) |
96 | | resdif 6883 |
. . . . . . 7
⊢ ((Fun
◡𝑏 ∧ (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀}) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})) |
97 | 34, 42, 95, 96 | syl3anc 1371 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})) |
98 | | uncom 4181 |
. . . . . . . . . 10
⊢ ({1,
𝑀} ∪ 𝐾) = (𝐾 ∪ {1, 𝑀}) |
99 | 98, 51 | eqtrid 2792 |
. . . . . . . . 9
⊢ (𝜑 → ({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1))) |
100 | | incom 4230 |
. . . . . . . . . . 11
⊢ ({1,
𝑀} ∩ 𝐾) = (𝐾 ∩ {1, 𝑀}) |
101 | 50 | simp1d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅) |
102 | 100, 101 | eqtrid 2792 |
. . . . . . . . . 10
⊢ (𝜑 → ({1, 𝑀} ∩ 𝐾) = ∅) |
103 | | uneqdifeq 4516 |
. . . . . . . . . 10
⊢ (({1,
𝑀} ⊆ (1...(𝑁 + 1)) ∧ ({1, 𝑀} ∩ 𝐾) = ∅) → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)) |
104 | 52, 102, 103 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)) |
105 | 99, 104 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾) |
106 | 105 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾) |
107 | | reseq2 6004 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})) = (𝑏 ↾ 𝐾)) |
108 | 107 | f1oeq1d 6857 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))) |
109 | | f1oeq2 6851 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ 𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))) |
110 | | f1oeq3 6852 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ 𝐾):𝐾–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) |
111 | 108, 109,
110 | 3bitrd 305 |
. . . . . . 7
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) |
112 | 106, 111 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) |
113 | 97, 112 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾) |
114 | | ssun1 4201 |
. . . . . . . 8
⊢ 𝐾 ⊆ (𝐾 ∪ {1, 𝑀}) |
115 | 114, 51 | sseqtrid 4061 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ⊆ (1...(𝑁 + 1))) |
116 | 115 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐾 ⊆ (1...(𝑁 + 1))) |
117 | 29 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) |
118 | | ssralv 4077 |
. . . . . 6
⊢ (𝐾 ⊆ (1...(𝑁 + 1)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦 → ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) |
119 | 116, 117,
118 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦) |
120 | 22 | resex 6058 |
. . . . . 6
⊢ (𝑏 ↾ 𝐾) ∈ V |
121 | | f1oeq1 6850 |
. . . . . . 7
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (𝑓:𝐾–1-1-onto→𝐾 ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) |
122 | | fveq1 6919 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (𝑓‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦)) |
123 | | fvres 6939 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐾 → ((𝑏 ↾ 𝐾)‘𝑦) = (𝑏‘𝑦)) |
124 | 122, 123 | sylan9eq 2800 |
. . . . . . . . 9
⊢ ((𝑓 = (𝑏 ↾ 𝐾) ∧ 𝑦 ∈ 𝐾) → (𝑓‘𝑦) = (𝑏‘𝑦)) |
125 | 124 | neeq1d 3006 |
. . . . . . . 8
⊢ ((𝑓 = (𝑏 ↾ 𝐾) ∧ 𝑦 ∈ 𝐾) → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
126 | 125 | ralbidva 3182 |
. . . . . . 7
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) |
127 | 121, 126 | anbi12d 631 |
. . . . . 6
⊢ (𝑓 = (𝑏 ↾ 𝐾) → ((𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦) ↔ ((𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦))) |
128 | | subfacp1lem3.c |
. . . . . 6
⊢ 𝐶 = {𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)} |
129 | 120, 127,
128 | elab2 3698 |
. . . . 5
⊢ ((𝑏 ↾ 𝐾) ∈ 𝐶 ↔ ((𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) |
130 | 113, 119,
129 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ 𝐾) ∈ 𝐶) |
131 | 46 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑁 ∈ ℕ) |
132 | 47 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) |
133 | | eqid 2740 |
. . . . . . . 8
⊢ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
134 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) |
135 | | vex 3492 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
136 | | f1oeq1 6850 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (𝑓:𝐾–1-1-onto→𝐾 ↔ 𝑐:𝐾–1-1-onto→𝐾)) |
137 | | fveq1 6919 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) |
138 | 137 | neeq1d 3006 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) |
139 | 138 | ralbidv 3184 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) |
140 | 136, 139 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑐 → ((𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦))) |
141 | 135, 140,
128 | elab2 3698 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) |
142 | 134, 141 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) |
143 | 142 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:𝐾–1-1-onto→𝐾) |
144 | 44, 45, 1, 131, 132, 48, 49, 133, 143 | subfacp1lem2a 35148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) |
145 | 144 | simp1d 1142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
146 | 44, 45, 1, 131, 132, 48, 49, 133, 143 | subfacp1lem2b 35149 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = (𝑐‘𝑦)) |
147 | 142 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦) |
148 | 147 | r19.21bi 3257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → (𝑐‘𝑦) ≠ 𝑦) |
149 | 146, 148 | eqnetrd 3014 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) |
150 | 149 | ralrimiva 3152 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ 𝐾 ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) |
151 | 144 | simp2d 1143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀) |
152 | | elfzuz 13580 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ∈
(ℤ≥‘2)) |
153 | | eluz2b3 12987 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
154 | 153 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ≠ 1) |
155 | 47, 152, 154 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≠ 1) |
156 | 155 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) |
157 | 151, 156 | eqnetrd 3014 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠
1) |
158 | 144 | simp3d 1144 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1) |
159 | 156 | necomd 3002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ≠ 𝑀) |
160 | 158, 159 | eqnetrd 3014 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀) |
161 | | fveq2 6920 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) |
162 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → 𝑦 = 1) |
163 | 161, 162 | neeq12d 3008 |
. . . . . . . . . 10
⊢ (𝑦 = 1 → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠
1)) |
164 | | fveq2 6920 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) |
165 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) |
166 | 164, 165 | neeq12d 3008 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑀 → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀)) |
167 | 60, 48, 163, 166 | ralpr 4725 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
{1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠ 1 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀)) |
168 | 157, 160,
167 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) |
169 | | ralunb 4220 |
. . . . . . . 8
⊢
(∀𝑦 ∈
(𝐾 ∪ {1, 𝑀})((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ (∀𝑦 ∈ 𝐾 ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ∧ ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) |
170 | 150, 168,
169 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) |
171 | 51 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) |
172 | 170, 171 | raleqtrdv 3336 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) |
173 | | prex 5452 |
. . . . . . . 8
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V |
174 | 135, 173 | unex 7779 |
. . . . . . 7
⊢ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ V |
175 | | f1oeq1 6850 |
. . . . . . . 8
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
176 | | fveq1 6919 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑓‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)) |
177 | 176 | neeq1d 3006 |
. . . . . . . . 9
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) |
178 | 177 | ralbidv 3184 |
. . . . . . . 8
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) |
179 | 175, 178 | anbi12d 631 |
. . . . . . 7
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦))) |
180 | 174, 179,
1 | elab2 3698 |
. . . . . 6
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) |
181 | 145, 172,
180 | sylanbrc 582 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴) |
182 | 151, 158 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) |
183 | | fveq1 6919 |
. . . . . . . 8
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑔‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) |
184 | 183 | eqeq1d 2742 |
. . . . . . 7
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑔‘1) = 𝑀 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀)) |
185 | | fveq1 6919 |
. . . . . . . 8
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑔‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) |
186 | 185 | eqeq1d 2742 |
. . . . . . 7
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑔‘𝑀) = 1 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) |
187 | 184, 186 | anbi12d 631 |
. . . . . 6
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1) ↔ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1))) |
188 | 187, 6 | elrab2 3711 |
. . . . 5
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐵 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴 ∧ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1))) |
189 | 181, 182,
188 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐵) |
190 | 56 | adantrr 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘1) = 𝑀) |
191 | 151 | adantrl 715 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀) |
192 | 190, 191 | eqtr4d 2783 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) |
193 | 59 | adantrr 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘𝑀) = 1) |
194 | 158 | adantrl 715 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1) |
195 | 193, 194 | eqtr4d 2783 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) |
196 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1 → (𝑏‘𝑦) = (𝑏‘1)) |
197 | 196, 161 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1))) |
198 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) |
199 | 198, 164 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀))) |
200 | 60, 48, 197, 199 | ralpr 4725 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
{1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ((𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ∧ (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀))) |
201 | 192, 195,
200 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)) |
202 | 201 | biantrud 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)))) |
203 | | ralunb 4220 |
. . . . . . . 8
⊢
(∀𝑦 ∈
(𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) |
204 | 202, 203 | bitr4di 289 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) |
205 | 146 | eqeq2d 2751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦))) |
206 | 205 | ralbidva 3182 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) |
207 | 206 | adantrl 715 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) |
208 | 51 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) |
209 | 208 | raleqdv 3334 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) |
210 | 204, 207,
209 | 3bitr3rd 310 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) |
211 | 123 | eqeq2d 2751 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐾 → ((𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ (𝑐‘𝑦) = (𝑏‘𝑦))) |
212 | | eqcom 2747 |
. . . . . . . 8
⊢ ((𝑐‘𝑦) = (𝑏‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦)) |
213 | 211, 212 | bitrdi 287 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐾 → ((𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦))) |
214 | 213 | ralbiia 3097 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦)) |
215 | 210, 214 | bitr4di 289 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) |
216 | 36 | adantrr 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏 Fn (1...(𝑁 + 1))) |
217 | 145 | adantrl 715 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
218 | | f1ofn 6863 |
. . . . . . 7
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) |
219 | 217, 218 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) |
220 | | eqfnfv 7064 |
. . . . . 6
⊢ ((𝑏 Fn (1...(𝑁 + 1)) ∧ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) |
221 | 216, 219,
220 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) |
222 | 143 | adantrl 715 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:𝐾–1-1-onto→𝐾) |
223 | | f1ofn 6863 |
. . . . . . 7
⊢ (𝑐:𝐾–1-1-onto→𝐾 → 𝑐 Fn 𝐾) |
224 | 222, 223 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn 𝐾) |
225 | 115 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐾 ⊆ (1...(𝑁 + 1))) |
226 | 216, 225 | fnssresd 6704 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 ↾ 𝐾) Fn 𝐾) |
227 | | eqfnfv 7064 |
. . . . . 6
⊢ ((𝑐 Fn 𝐾 ∧ (𝑏 ↾ 𝐾) Fn 𝐾) → (𝑐 = (𝑏 ↾ 𝐾) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) |
228 | 224, 226,
227 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 = (𝑏 ↾ 𝐾) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) |
229 | 215, 221,
228 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ 𝑐 = (𝑏 ↾ 𝐾))) |
230 | 12, 130, 189, 229 | f1o2d 7704 |
. . 3
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)):𝐵–1-1-onto→𝐶) |
231 | 11, 230 | hasheqf1od 14402 |
. 2
⊢ (𝜑 → (♯‘𝐵) = (♯‘𝐶)) |
232 | 128 | fveq2i 6923 |
. . . 4
⊢
(♯‘𝐶) =
(♯‘{𝑓 ∣
(𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)}) |
233 | | fzfi 14023 |
. . . . . . 7
⊢
(2...(𝑁 + 1)) ∈
Fin |
234 | | diffi 9242 |
. . . . . . 7
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
Fin) |
235 | 233, 234 | ax-mp 5 |
. . . . . 6
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
Fin |
236 | 49, 235 | eqeltri 2840 |
. . . . 5
⊢ 𝐾 ∈ Fin |
237 | 44 | derangval 35135 |
. . . . 5
⊢ (𝐾 ∈ Fin → (𝐷‘𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)})) |
238 | 236, 237 | ax-mp 5 |
. . . 4
⊢ (𝐷‘𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)}) |
239 | 44, 45 | derangen2 35142 |
. . . . 5
⊢ (𝐾 ∈ Fin → (𝐷‘𝐾) = (𝑆‘(♯‘𝐾))) |
240 | 236, 239 | ax-mp 5 |
. . . 4
⊢ (𝐷‘𝐾) = (𝑆‘(♯‘𝐾)) |
241 | 232, 238,
240 | 3eqtr2ri 2775 |
. . 3
⊢ (𝑆‘(♯‘𝐾)) = (♯‘𝐶) |
242 | 50 | simp3d 1144 |
. . . 4
⊢ (𝜑 → (♯‘𝐾) = (𝑁 − 1)) |
243 | 242 | fveq2d 6924 |
. . 3
⊢ (𝜑 → (𝑆‘(♯‘𝐾)) = (𝑆‘(𝑁 − 1))) |
244 | 241, 243 | eqtr3id 2794 |
. 2
⊢ (𝜑 → (♯‘𝐶) = (𝑆‘(𝑁 − 1))) |
245 | 231, 244 | eqtrd 2780 |
1
⊢ (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1))) |