| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | subfacp1lem.a | . . . . . . 7
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} | 
| 2 |  | fzfi 14013 | . . . . . . . 8
⊢
(1...(𝑁 + 1)) ∈
Fin | 
| 3 |  | deranglem 35171 | . . . . . . . 8
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) | 
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin | 
| 5 | 1, 4 | eqeltri 2837 | . . . . . 6
⊢ 𝐴 ∈ Fin | 
| 6 |  | subfacp1lem3.b | . . . . . . 7
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1)} | 
| 7 | 6 | ssrab3 4082 | . . . . . 6
⊢ 𝐵 ⊆ 𝐴 | 
| 8 |  | ssfi 9213 | . . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | 
| 9 | 5, 7, 8 | mp2an 692 | . . . . 5
⊢ 𝐵 ∈ Fin | 
| 10 | 9 | elexi 3503 | . . . 4
⊢ 𝐵 ∈ V | 
| 11 | 10 | a1i 11 | . . 3
⊢ (𝜑 → 𝐵 ∈ V) | 
| 12 |  | eqid 2737 | . . . 4
⊢ (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)) = (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)) | 
| 13 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | 
| 14 |  | fveq1 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) | 
| 15 | 14 | eqeq1d 2739 | . . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) | 
| 16 |  | fveq1 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) | 
| 17 | 16 | eqeq1d 2739 | . . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) = 1 ↔ (𝑏‘𝑀) = 1)) | 
| 18 | 15, 17 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) | 
| 19 | 18, 6 | elrab2 3695 | . . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) | 
| 20 | 13, 19 | sylib 218 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1))) | 
| 21 | 20 | simpld 494 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) | 
| 22 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑏 ∈ V | 
| 23 |  | f1oeq1 6836 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) | 
| 24 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) | 
| 25 | 24 | neeq1d 3000 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) | 
| 26 | 25 | ralbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) | 
| 27 | 23, 26 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) | 
| 28 | 22, 27, 1 | elab2 3682 | . . . . . . . . . 10
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) | 
| 29 | 21, 28 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) | 
| 30 | 29 | simpld 494 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) | 
| 31 |  | f1of1 6847 | . . . . . . . 8
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) | 
| 32 |  | df-f1 6566 | . . . . . . . . 9
⊢ (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡𝑏)) | 
| 33 | 32 | simprbi 496 | . . . . . . . 8
⊢ (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡𝑏) | 
| 34 | 30, 31, 33 | 3syl 18 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡𝑏) | 
| 35 |  | f1ofn 6849 | . . . . . . . . . . 11
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏 Fn (1...(𝑁 + 1))) | 
| 36 | 30, 35 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 Fn (1...(𝑁 + 1))) | 
| 37 |  | fnresdm 6687 | . . . . . . . . . 10
⊢ (𝑏 Fn (1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))) = 𝑏) | 
| 38 |  | f1oeq1 6836 | . . . . . . . . . 10
⊢ ((𝑏 ↾ (1...(𝑁 + 1))) = 𝑏 → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) | 
| 39 | 36, 37, 38 | 3syl 18 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) | 
| 40 | 30, 39 | mpbird 257 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) | 
| 41 |  | f1ofo 6855 | . . . . . . . 8
⊢ ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) | 
| 42 | 40, 41 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) | 
| 43 |  | ssun2 4179 | . . . . . . . . . . . 12
⊢ {1, 𝑀} ⊆ (𝐾 ∪ {1, 𝑀}) | 
| 44 |  | derang.d | . . . . . . . . . . . . . 14
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | 
| 45 |  | subfac.n | . . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | 
| 46 |  | subfacp1lem1.n | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 47 |  | subfacp1lem1.m | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) | 
| 48 |  | subfacp1lem1.x | . . . . . . . . . . . . . 14
⊢ 𝑀 ∈ V | 
| 49 |  | subfacp1lem1.k | . . . . . . . . . . . . . 14
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) | 
| 50 | 44, 45, 1, 46, 47, 48, 49 | subfacp1lem1 35184 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) | 
| 51 | 50 | simp2d 1144 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) | 
| 52 | 43, 51 | sseqtrid 4026 | . . . . . . . . . . 11
⊢ (𝜑 → {1, 𝑀} ⊆ (1...(𝑁 + 1))) | 
| 53 | 52 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {1, 𝑀} ⊆ (1...(𝑁 + 1))) | 
| 54 | 36, 53 | fnssresd 6692 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀}) | 
| 55 | 20 | simprd 495 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) = 1)) | 
| 56 | 55 | simpld 494 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) | 
| 57 | 48 | prid2 4763 | . . . . . . . . . . . 12
⊢ 𝑀 ∈ {1, 𝑀} | 
| 58 | 56, 57 | eqeltrdi 2849 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) ∈ {1, 𝑀}) | 
| 59 | 55 | simprd 495 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) = 1) | 
| 60 |  | 1ex 11257 | . . . . . . . . . . . . 13
⊢ 1 ∈
V | 
| 61 | 60 | prid1 4762 | . . . . . . . . . . . 12
⊢ 1 ∈
{1, 𝑀} | 
| 62 | 59, 61 | eqeltrdi 2849 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ∈ {1, 𝑀}) | 
| 63 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (𝑏‘𝑥) = (𝑏‘1)) | 
| 64 | 63 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((𝑏‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘1) ∈ {1, 𝑀})) | 
| 65 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑀 → (𝑏‘𝑥) = (𝑏‘𝑀)) | 
| 66 | 65 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → ((𝑏‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘𝑀) ∈ {1, 𝑀})) | 
| 67 | 60, 48, 64, 66 | ralpr 4700 | . . . . . . . . . . 11
⊢
(∀𝑥 ∈
{1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀} ↔ ((𝑏‘1) ∈ {1, 𝑀} ∧ (𝑏‘𝑀) ∈ {1, 𝑀})) | 
| 68 | 58, 62, 67 | sylanbrc 583 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀}) | 
| 69 |  | fvres 6925 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑥) = (𝑏‘𝑥)) | 
| 70 | 69 | eleq1d 2826 | . . . . . . . . . . 11
⊢ (𝑥 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ (𝑏‘𝑥) ∈ {1, 𝑀})) | 
| 71 | 70 | ralbiia 3091 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
{1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ ∀𝑥 ∈ {1, 𝑀} (𝑏‘𝑥) ∈ {1, 𝑀}) | 
| 72 | 68, 71 | sylibr 234 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀}) | 
| 73 |  | ffnfv 7139 | . . . . . . . . 9
⊢ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀})) | 
| 74 | 54, 72, 73 | sylanbrc 583 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀}) | 
| 75 |  | fveqeq2 6915 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) = 1 ↔ (𝑏‘𝑀) = 1)) | 
| 76 | 75 | rspcev 3622 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ {1, 𝑀} ∧ (𝑏‘𝑀) = 1) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1) | 
| 77 | 57, 59, 76 | sylancr 587 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1) | 
| 78 |  | fveqeq2 6915 | . . . . . . . . . . . 12
⊢ (𝑦 = 1 → ((𝑏‘𝑦) = 𝑀 ↔ (𝑏‘1) = 𝑀)) | 
| 79 | 78 | rspcev 3622 | . . . . . . . . . . 11
⊢ ((1
∈ {1, 𝑀} ∧ (𝑏‘1) = 𝑀) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀) | 
| 80 | 61, 56, 79 | sylancr 587 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀) | 
| 81 |  | eqeq2 2749 | . . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((𝑏‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 1)) | 
| 82 | 81 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝑥 = 1 → (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1)) | 
| 83 |  | eqeq2 2749 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → ((𝑏‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 𝑀)) | 
| 84 | 83 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀)) | 
| 85 | 60, 48, 82, 84 | ralpr 4700 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
{1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥 ↔ (∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 1 ∧ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑀)) | 
| 86 | 77, 80, 85 | sylanbrc 583 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) | 
| 87 |  | eqcom 2744 | . . . . . . . . . . . 12
⊢ (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥) | 
| 88 |  | fvres 6925 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑦) = (𝑏‘𝑦)) | 
| 89 | 88 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥 ↔ (𝑏‘𝑦) = 𝑥)) | 
| 90 | 87, 89 | bitrid 283 | . . . . . . . . . . 11
⊢ (𝑦 ∈ {1, 𝑀} → (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ (𝑏‘𝑦) = 𝑥)) | 
| 91 | 90 | rexbiia 3092 | . . . . . . . . . 10
⊢
(∃𝑦 ∈ {1,
𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) | 
| 92 | 91 | ralbii 3093 | . . . . . . . . 9
⊢
(∀𝑥 ∈
{1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = 𝑥) | 
| 93 | 86, 92 | sylibr 234 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦)) | 
| 94 |  | dffo3 7122 | . . . . . . . 8
⊢ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦))) | 
| 95 | 74, 93, 94 | sylanbrc 583 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀}) | 
| 96 |  | resdif 6869 | . . . . . . 7
⊢ ((Fun
◡𝑏 ∧ (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀}) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})) | 
| 97 | 34, 42, 95, 96 | syl3anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})) | 
| 98 |  | uncom 4158 | . . . . . . . . . 10
⊢ ({1,
𝑀} ∪ 𝐾) = (𝐾 ∪ {1, 𝑀}) | 
| 99 | 98, 51 | eqtrid 2789 | . . . . . . . . 9
⊢ (𝜑 → ({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1))) | 
| 100 |  | incom 4209 | . . . . . . . . . . 11
⊢ ({1,
𝑀} ∩ 𝐾) = (𝐾 ∩ {1, 𝑀}) | 
| 101 | 50 | simp1d 1143 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅) | 
| 102 | 100, 101 | eqtrid 2789 | . . . . . . . . . 10
⊢ (𝜑 → ({1, 𝑀} ∩ 𝐾) = ∅) | 
| 103 |  | uneqdifeq 4493 | . . . . . . . . . 10
⊢ (({1,
𝑀} ⊆ (1...(𝑁 + 1)) ∧ ({1, 𝑀} ∩ 𝐾) = ∅) → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)) | 
| 104 | 52, 102, 103 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)) | 
| 105 | 99, 104 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾) | 
| 106 | 105 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾) | 
| 107 |  | reseq2 5992 | . . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})) = (𝑏 ↾ 𝐾)) | 
| 108 | 107 | f1oeq1d 6843 | . . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))) | 
| 109 |  | f1oeq2 6837 | . . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ 𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))) | 
| 110 |  | f1oeq3 6838 | . . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ 𝐾):𝐾–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) | 
| 111 | 108, 109,
110 | 3bitrd 305 | . . . . . . 7
⊢
(((1...(𝑁 + 1))
∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) | 
| 112 | 106, 111 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) | 
| 113 | 97, 112 | mpbid 232 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾) | 
| 114 |  | ssun1 4178 | . . . . . . . 8
⊢ 𝐾 ⊆ (𝐾 ∪ {1, 𝑀}) | 
| 115 | 114, 51 | sseqtrid 4026 | . . . . . . 7
⊢ (𝜑 → 𝐾 ⊆ (1...(𝑁 + 1))) | 
| 116 | 115 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐾 ⊆ (1...(𝑁 + 1))) | 
| 117 | 29 | simprd 495 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) | 
| 118 |  | ssralv 4052 | . . . . . 6
⊢ (𝐾 ⊆ (1...(𝑁 + 1)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦 → ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) | 
| 119 | 116, 117,
118 | sylc 65 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦) | 
| 120 | 22 | resex 6047 | . . . . . 6
⊢ (𝑏 ↾ 𝐾) ∈ V | 
| 121 |  | f1oeq1 6836 | . . . . . . 7
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (𝑓:𝐾–1-1-onto→𝐾 ↔ (𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾)) | 
| 122 |  | fveq1 6905 | . . . . . . . . . 10
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (𝑓‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦)) | 
| 123 |  | fvres 6925 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐾 → ((𝑏 ↾ 𝐾)‘𝑦) = (𝑏‘𝑦)) | 
| 124 | 122, 123 | sylan9eq 2797 | . . . . . . . . 9
⊢ ((𝑓 = (𝑏 ↾ 𝐾) ∧ 𝑦 ∈ 𝐾) → (𝑓‘𝑦) = (𝑏‘𝑦)) | 
| 125 | 124 | neeq1d 3000 | . . . . . . . 8
⊢ ((𝑓 = (𝑏 ↾ 𝐾) ∧ 𝑦 ∈ 𝐾) → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) | 
| 126 | 125 | ralbidva 3176 | . . . . . . 7
⊢ (𝑓 = (𝑏 ↾ 𝐾) → (∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) | 
| 127 | 121, 126 | anbi12d 632 | . . . . . 6
⊢ (𝑓 = (𝑏 ↾ 𝐾) → ((𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦) ↔ ((𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦))) | 
| 128 |  | subfacp1lem3.c | . . . . . 6
⊢ 𝐶 = {𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)} | 
| 129 | 120, 127,
128 | elab2 3682 | . . . . 5
⊢ ((𝑏 ↾ 𝐾) ∈ 𝐶 ↔ ((𝑏 ↾ 𝐾):𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) ≠ 𝑦)) | 
| 130 | 113, 119,
129 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ↾ 𝐾) ∈ 𝐶) | 
| 131 | 46 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑁 ∈ ℕ) | 
| 132 | 47 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) | 
| 133 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | 
| 134 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) | 
| 135 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑐 ∈ V | 
| 136 |  | f1oeq1 6836 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (𝑓:𝐾–1-1-onto→𝐾 ↔ 𝑐:𝐾–1-1-onto→𝐾)) | 
| 137 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) | 
| 138 | 137 | neeq1d 3000 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) | 
| 139 | 138 | ralbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) | 
| 140 | 136, 139 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑓 = 𝑐 → ((𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦))) | 
| 141 | 135, 140,
128 | elab2 3682 | . . . . . . . . . 10
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) | 
| 142 | 134, 141 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦)) | 
| 143 | 142 | simpld 494 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:𝐾–1-1-onto→𝐾) | 
| 144 | 44, 45, 1, 131, 132, 48, 49, 133, 143 | subfacp1lem2a 35185 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) | 
| 145 | 144 | simp1d 1143 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) | 
| 146 | 44, 45, 1, 131, 132, 48, 49, 133, 143 | subfacp1lem2b 35186 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = (𝑐‘𝑦)) | 
| 147 | 142 | simprd 495 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) ≠ 𝑦) | 
| 148 | 147 | r19.21bi 3251 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → (𝑐‘𝑦) ≠ 𝑦) | 
| 149 | 146, 148 | eqnetrd 3008 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) | 
| 150 | 149 | ralrimiva 3146 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ 𝐾 ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) | 
| 151 | 144 | simp2d 1144 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀) | 
| 152 |  | elfzuz 13560 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ∈
(ℤ≥‘2)) | 
| 153 |  | eluz2b3 12964 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | 
| 154 | 153 | simprbi 496 | . . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ≠ 1) | 
| 155 | 47, 152, 154 | 3syl 18 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≠ 1) | 
| 156 | 155 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) | 
| 157 | 151, 156 | eqnetrd 3008 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠
1) | 
| 158 | 144 | simp3d 1145 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1) | 
| 159 | 156 | necomd 2996 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ≠ 𝑀) | 
| 160 | 158, 159 | eqnetrd 3008 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀) | 
| 161 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑦 = 1 → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) | 
| 162 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑦 = 1 → 𝑦 = 1) | 
| 163 | 161, 162 | neeq12d 3002 | . . . . . . . . . 10
⊢ (𝑦 = 1 → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠
1)) | 
| 164 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) | 
| 165 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) | 
| 166 | 164, 165 | neeq12d 3002 | . . . . . . . . . 10
⊢ (𝑦 = 𝑀 → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀)) | 
| 167 | 60, 48, 163, 166 | ralpr 4700 | . . . . . . . . 9
⊢
(∀𝑦 ∈
{1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ≠ 1 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) ≠ 𝑀)) | 
| 168 | 157, 160,
167 | sylanbrc 583 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) | 
| 169 |  | ralunb 4197 | . . . . . . . 8
⊢
(∀𝑦 ∈
(𝐾 ∪ {1, 𝑀})((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ↔ (∀𝑦 ∈ 𝐾 ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦 ∧ ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) | 
| 170 | 150, 168,
169 | sylanbrc 583 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) | 
| 171 | 51 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) | 
| 172 | 170, 171 | raleqtrdv 3328 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦) | 
| 173 |  | prex 5437 | . . . . . . . 8
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V | 
| 174 | 135, 173 | unex 7764 | . . . . . . 7
⊢ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ V | 
| 175 |  | f1oeq1 6836 | . . . . . . . 8
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) | 
| 176 |  | fveq1 6905 | . . . . . . . . . 10
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑓‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)) | 
| 177 | 176 | neeq1d 3000 | . . . . . . . . 9
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) | 
| 178 | 177 | ralbidv 3178 | . . . . . . . 8
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) | 
| 179 | 175, 178 | anbi12d 632 | . . . . . . 7
⊢ (𝑓 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦))) | 
| 180 | 174, 179,
1 | elab2 3682 | . . . . . 6
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ≠ 𝑦)) | 
| 181 | 145, 172,
180 | sylanbrc 583 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴) | 
| 182 | 151, 158 | jca 511 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) | 
| 183 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑔‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) | 
| 184 | 183 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑔‘1) = 𝑀 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀)) | 
| 185 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (𝑔‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) | 
| 186 | 185 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → ((𝑔‘𝑀) = 1 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1)) | 
| 187 | 184, 186 | anbi12d 632 | . . . . . 6
⊢ (𝑔 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1) ↔ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1))) | 
| 188 | 187, 6 | elrab2 3695 | . . . . 5
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐵 ↔ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐴 ∧ (((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀 ∧ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1))) | 
| 189 | 181, 182,
188 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ∈ 𝐵) | 
| 190 | 56 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘1) = 𝑀) | 
| 191 | 151 | adantrl 716 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) = 𝑀) | 
| 192 | 190, 191 | eqtr4d 2780 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1)) | 
| 193 | 59 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘𝑀) = 1) | 
| 194 | 158 | adantrl 716 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀) = 1) | 
| 195 | 193, 194 | eqtr4d 2780 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀)) | 
| 196 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑦 = 1 → (𝑏‘𝑦) = (𝑏‘1)) | 
| 197 | 196, 161 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (𝑦 = 1 → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1))) | 
| 198 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) | 
| 199 | 198, 164 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀))) | 
| 200 | 60, 48, 197, 199 | ralpr 4700 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
{1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ((𝑏‘1) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘1) ∧ (𝑏‘𝑀) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑀))) | 
| 201 | 192, 195,
200 | sylanbrc 583 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)) | 
| 202 | 201 | biantrud 531 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦)))) | 
| 203 |  | ralunb 4197 | . . . . . . . 8
⊢
(∀𝑦 ∈
(𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) | 
| 204 | 202, 203 | bitr4di 289 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) | 
| 205 | 146 | eqeq2d 2748 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ 𝐾) → ((𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦))) | 
| 206 | 205 | ralbidva 3176 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) | 
| 207 | 206 | adantrl 716 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) | 
| 208 | 51 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) | 
| 209 | 208 | raleqdv 3326 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) | 
| 210 | 204, 207,
209 | 3bitr3rd 310 | . . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦))) | 
| 211 | 123 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑦 ∈ 𝐾 → ((𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ (𝑐‘𝑦) = (𝑏‘𝑦))) | 
| 212 |  | eqcom 2744 | . . . . . . . 8
⊢ ((𝑐‘𝑦) = (𝑏‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦)) | 
| 213 | 211, 212 | bitrdi 287 | . . . . . . 7
⊢ (𝑦 ∈ 𝐾 → ((𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦))) | 
| 214 | 213 | ralbiia 3091 | . . . . . 6
⊢
(∀𝑦 ∈
𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑏‘𝑦) = (𝑐‘𝑦)) | 
| 215 | 210, 214 | bitr4di 289 | . . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) | 
| 216 | 36 | adantrr 717 | . . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏 Fn (1...(𝑁 + 1))) | 
| 217 | 145 | adantrl 716 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) | 
| 218 |  | f1ofn 6849 | . . . . . . 7
⊢ ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) | 
| 219 | 217, 218 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) | 
| 220 |  | eqfnfv 7051 | . . . . . 6
⊢ ((𝑏 Fn (1...(𝑁 + 1)) ∧ (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) Fn (1...(𝑁 + 1))) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) | 
| 221 | 216, 219,
220 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) = ((𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉})‘𝑦))) | 
| 222 | 143 | adantrl 716 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:𝐾–1-1-onto→𝐾) | 
| 223 |  | f1ofn 6849 | . . . . . . 7
⊢ (𝑐:𝐾–1-1-onto→𝐾 → 𝑐 Fn 𝐾) | 
| 224 | 222, 223 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn 𝐾) | 
| 225 | 115 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐾 ⊆ (1...(𝑁 + 1))) | 
| 226 | 216, 225 | fnssresd 6692 | . . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 ↾ 𝐾) Fn 𝐾) | 
| 227 |  | eqfnfv 7051 | . . . . . 6
⊢ ((𝑐 Fn 𝐾 ∧ (𝑏 ↾ 𝐾) Fn 𝐾) → (𝑐 = (𝑏 ↾ 𝐾) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) | 
| 228 | 224, 226,
227 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑐 = (𝑏 ↾ 𝐾) ↔ ∀𝑦 ∈ 𝐾 (𝑐‘𝑦) = ((𝑏 ↾ 𝐾)‘𝑦))) | 
| 229 | 215, 221,
228 | 3bitr4d 311 | . . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝑐 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ↔ 𝑐 = (𝑏 ↾ 𝐾))) | 
| 230 | 12, 130, 189, 229 | f1o2d 7687 | . . 3
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ (𝑏 ↾ 𝐾)):𝐵–1-1-onto→𝐶) | 
| 231 | 11, 230 | hasheqf1od 14392 | . 2
⊢ (𝜑 → (♯‘𝐵) = (♯‘𝐶)) | 
| 232 | 128 | fveq2i 6909 | . . . 4
⊢
(♯‘𝐶) =
(♯‘{𝑓 ∣
(𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)}) | 
| 233 |  | fzfi 14013 | . . . . . . 7
⊢
(2...(𝑁 + 1)) ∈
Fin | 
| 234 |  | diffi 9215 | . . . . . . 7
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
Fin) | 
| 235 | 233, 234 | ax-mp 5 | . . . . . 6
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
Fin | 
| 236 | 49, 235 | eqeltri 2837 | . . . . 5
⊢ 𝐾 ∈ Fin | 
| 237 | 44 | derangval 35172 | . . . . 5
⊢ (𝐾 ∈ Fin → (𝐷‘𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)})) | 
| 238 | 236, 237 | ax-mp 5 | . . . 4
⊢ (𝐷‘𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)}) | 
| 239 | 44, 45 | derangen2 35179 | . . . . 5
⊢ (𝐾 ∈ Fin → (𝐷‘𝐾) = (𝑆‘(♯‘𝐾))) | 
| 240 | 236, 239 | ax-mp 5 | . . . 4
⊢ (𝐷‘𝐾) = (𝑆‘(♯‘𝐾)) | 
| 241 | 232, 238,
240 | 3eqtr2ri 2772 | . . 3
⊢ (𝑆‘(♯‘𝐾)) = (♯‘𝐶) | 
| 242 | 50 | simp3d 1145 | . . . 4
⊢ (𝜑 → (♯‘𝐾) = (𝑁 − 1)) | 
| 243 | 242 | fveq2d 6910 | . . 3
⊢ (𝜑 → (𝑆‘(♯‘𝐾)) = (𝑆‘(𝑁 − 1))) | 
| 244 | 241, 243 | eqtr3id 2791 | . 2
⊢ (𝜑 → (♯‘𝐶) = (𝑆‘(𝑁 − 1))) | 
| 245 | 231, 244 | eqtrd 2777 | 1
⊢ (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1))) |