Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem3 Structured version   Visualization version   GIF version

Theorem subfacp1lem3 35187
Description: Lemma for subfacp1 35191. In subfacp1lem6 35190 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements that satisfy this for fixed 𝑀 = (𝑓‘1) is in bijection with 𝑁 − 1 derangements, by simply dropping the 𝑥 = 1 and 𝑥 = 𝑀 points from the function to get a derangement on 𝐾 = (1...(𝑁 − 1)) ∖ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem3.b 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) = 1)}
subfacp1lem3.c 𝐶 = {𝑓 ∣ (𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦)}
Assertion
Ref Expression
subfacp1lem3 (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1)))
Distinct variable groups:   𝑓,𝑔,𝑛,𝑥,𝑦,𝐴   𝑓,𝑁,𝑔,𝑛,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑔,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑛)   𝐵(𝑛)   𝐶(𝑓,𝑔,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑓,𝑔)   𝐾(𝑔)   𝑀(𝑛)

Proof of Theorem subfacp1lem3
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subfacp1lem.a . . . . . . 7 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
2 fzfi 14013 . . . . . . . 8 (1...(𝑁 + 1)) ∈ Fin
3 deranglem 35171 . . . . . . . 8 ((1...(𝑁 + 1)) ∈ Fin → {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
42, 3ax-mp 5 . . . . . . 7 {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ∈ Fin
51, 4eqeltri 2837 . . . . . 6 𝐴 ∈ Fin
6 subfacp1lem3.b . . . . . . 7 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) = 1)}
76ssrab3 4082 . . . . . 6 𝐵𝐴
8 ssfi 9213 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
95, 7, 8mp2an 692 . . . . 5 𝐵 ∈ Fin
109elexi 3503 . . . 4 𝐵 ∈ V
1110a1i 11 . . 3 (𝜑𝐵 ∈ V)
12 eqid 2737 . . . 4 (𝑏𝐵 ↦ (𝑏𝐾)) = (𝑏𝐵 ↦ (𝑏𝐾))
13 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝑏𝐵)
14 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1))
1514eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀))
16 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑔 = 𝑏 → (𝑔𝑀) = (𝑏𝑀))
1716eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑔 = 𝑏 → ((𝑔𝑀) = 1 ↔ (𝑏𝑀) = 1))
1815, 17anbi12d 632 . . . . . . . . . . . . 13 (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) = 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏𝑀) = 1)))
1918, 6elrab2 3695 . . . . . . . . . . . 12 (𝑏𝐵 ↔ (𝑏𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏𝑀) = 1)))
2013, 19sylib 218 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏𝑀) = 1)))
2120simpld 494 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏𝐴)
22 vex 3484 . . . . . . . . . . 11 𝑏 ∈ V
23 f1oeq1 6836 . . . . . . . . . . . 12 (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
24 fveq1 6905 . . . . . . . . . . . . . 14 (𝑓 = 𝑏 → (𝑓𝑦) = (𝑏𝑦))
2524neeq1d 3000 . . . . . . . . . . . . 13 (𝑓 = 𝑏 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑏𝑦) ≠ 𝑦))
2625ralbidv 3178 . . . . . . . . . . . 12 (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦))
2723, 26anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦)))
2822, 27, 1elab2 3682 . . . . . . . . . 10 (𝑏𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦))
2921, 28sylib 218 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦))
3029simpld 494 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
31 f1of1 6847 . . . . . . . 8 (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)))
32 df-f1 6566 . . . . . . . . 9 (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun 𝑏))
3332simprbi 496 . . . . . . . 8 (𝑏:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun 𝑏)
3430, 31, 333syl 18 . . . . . . 7 ((𝜑𝑏𝐵) → Fun 𝑏)
35 f1ofn 6849 . . . . . . . . . . 11 (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏 Fn (1...(𝑁 + 1)))
3630, 35syl 17 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 Fn (1...(𝑁 + 1)))
37 fnresdm 6687 . . . . . . . . . 10 (𝑏 Fn (1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))) = 𝑏)
38 f1oeq1 6836 . . . . . . . . . 10 ((𝑏 ↾ (1...(𝑁 + 1))) = 𝑏 → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
3936, 37, 383syl 18 . . . . . . . . 9 ((𝜑𝑏𝐵) → ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
4030, 39mpbird 257 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
41 f1ofo 6855 . . . . . . . 8 ((𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)))
4240, 41syl 17 . . . . . . 7 ((𝜑𝑏𝐵) → (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)))
43 ssun2 4179 . . . . . . . . . . . 12 {1, 𝑀} ⊆ (𝐾 ∪ {1, 𝑀})
44 derang.d . . . . . . . . . . . . . 14 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
45 subfac.n . . . . . . . . . . . . . 14 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
46 subfacp1lem1.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
47 subfacp1lem1.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
48 subfacp1lem1.x . . . . . . . . . . . . . 14 𝑀 ∈ V
49 subfacp1lem1.k . . . . . . . . . . . . . 14 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
5044, 45, 1, 46, 47, 48, 49subfacp1lem1 35184 . . . . . . . . . . . . 13 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
5150simp2d 1144 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
5243, 51sseqtrid 4026 . . . . . . . . . . 11 (𝜑 → {1, 𝑀} ⊆ (1...(𝑁 + 1)))
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝐵) → {1, 𝑀} ⊆ (1...(𝑁 + 1)))
5436, 53fnssresd 6692 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀})
5520simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏𝑀) = 1))
5655simpld 494 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → (𝑏‘1) = 𝑀)
5748prid2 4763 . . . . . . . . . . . 12 𝑀 ∈ {1, 𝑀}
5856, 57eqeltrdi 2849 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏‘1) ∈ {1, 𝑀})
5955simprd 495 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → (𝑏𝑀) = 1)
60 1ex 11257 . . . . . . . . . . . . 13 1 ∈ V
6160prid1 4762 . . . . . . . . . . . 12 1 ∈ {1, 𝑀}
6259, 61eqeltrdi 2849 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏𝑀) ∈ {1, 𝑀})
63 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑏𝑥) = (𝑏‘1))
6463eleq1d 2826 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑏𝑥) ∈ {1, 𝑀} ↔ (𝑏‘1) ∈ {1, 𝑀}))
65 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 𝑀 → (𝑏𝑥) = (𝑏𝑀))
6665eleq1d 2826 . . . . . . . . . . . 12 (𝑥 = 𝑀 → ((𝑏𝑥) ∈ {1, 𝑀} ↔ (𝑏𝑀) ∈ {1, 𝑀}))
6760, 48, 64, 66ralpr 4700 . . . . . . . . . . 11 (∀𝑥 ∈ {1, 𝑀} (𝑏𝑥) ∈ {1, 𝑀} ↔ ((𝑏‘1) ∈ {1, 𝑀} ∧ (𝑏𝑀) ∈ {1, 𝑀}))
6858, 62, 67sylanbrc 583 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∀𝑥 ∈ {1, 𝑀} (𝑏𝑥) ∈ {1, 𝑀})
69 fvres 6925 . . . . . . . . . . . 12 (𝑥 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑥) = (𝑏𝑥))
7069eleq1d 2826 . . . . . . . . . . 11 (𝑥 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ (𝑏𝑥) ∈ {1, 𝑀}))
7170ralbiia 3091 . . . . . . . . . 10 (∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀} ↔ ∀𝑥 ∈ {1, 𝑀} (𝑏𝑥) ∈ {1, 𝑀})
7268, 71sylibr 234 . . . . . . . . 9 ((𝜑𝑏𝐵) → ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀})
73 ffnfv 7139 . . . . . . . . 9 ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}) Fn {1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀} ((𝑏 ↾ {1, 𝑀})‘𝑥) ∈ {1, 𝑀}))
7454, 72, 73sylanbrc 583 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀})
75 fveqeq2 6915 . . . . . . . . . . . 12 (𝑦 = 𝑀 → ((𝑏𝑦) = 1 ↔ (𝑏𝑀) = 1))
7675rspcev 3622 . . . . . . . . . . 11 ((𝑀 ∈ {1, 𝑀} ∧ (𝑏𝑀) = 1) → ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 1)
7757, 59, 76sylancr 587 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 1)
78 fveqeq2 6915 . . . . . . . . . . . 12 (𝑦 = 1 → ((𝑏𝑦) = 𝑀 ↔ (𝑏‘1) = 𝑀))
7978rspcev 3622 . . . . . . . . . . 11 ((1 ∈ {1, 𝑀} ∧ (𝑏‘1) = 𝑀) → ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑀)
8061, 56, 79sylancr 587 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑀)
81 eqeq2 2749 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑏𝑦) = 𝑥 ↔ (𝑏𝑦) = 1))
8281rexbidv 3179 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 1))
83 eqeq2 2749 . . . . . . . . . . . 12 (𝑥 = 𝑀 → ((𝑏𝑦) = 𝑥 ↔ (𝑏𝑦) = 𝑀))
8483rexbidv 3179 . . . . . . . . . . 11 (𝑥 = 𝑀 → (∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥 ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑀))
8560, 48, 82, 84ralpr 4700 . . . . . . . . . 10 (∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥 ↔ (∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 1 ∧ ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑀))
8677, 80, 85sylanbrc 583 . . . . . . . . 9 ((𝜑𝑏𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥)
87 eqcom 2744 . . . . . . . . . . . 12 (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥)
88 fvres 6925 . . . . . . . . . . . . 13 (𝑦 ∈ {1, 𝑀} → ((𝑏 ↾ {1, 𝑀})‘𝑦) = (𝑏𝑦))
8988eqeq1d 2739 . . . . . . . . . . . 12 (𝑦 ∈ {1, 𝑀} → (((𝑏 ↾ {1, 𝑀})‘𝑦) = 𝑥 ↔ (𝑏𝑦) = 𝑥))
9087, 89bitrid 283 . . . . . . . . . . 11 (𝑦 ∈ {1, 𝑀} → (𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ (𝑏𝑦) = 𝑥))
9190rexbiia 3092 . . . . . . . . . 10 (∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥)
9291ralbii 3093 . . . . . . . . 9 (∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦) ↔ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀} (𝑏𝑦) = 𝑥)
9386, 92sylibr 234 . . . . . . . 8 ((𝜑𝑏𝐵) → ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦))
94 dffo3 7122 . . . . . . . 8 ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀} ↔ ((𝑏 ↾ {1, 𝑀}):{1, 𝑀}⟶{1, 𝑀} ∧ ∀𝑥 ∈ {1, 𝑀}∃𝑦 ∈ {1, 𝑀}𝑥 = ((𝑏 ↾ {1, 𝑀})‘𝑦)))
9574, 93, 94sylanbrc 583 . . . . . . 7 ((𝜑𝑏𝐵) → (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀})
96 resdif 6869 . . . . . . 7 ((Fun 𝑏 ∧ (𝑏 ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ (𝑏 ↾ {1, 𝑀}):{1, 𝑀}–onto→{1, 𝑀}) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))
9734, 42, 95, 96syl3anc 1373 . . . . . 6 ((𝜑𝑏𝐵) → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}))
98 uncom 4158 . . . . . . . . . 10 ({1, 𝑀} ∪ 𝐾) = (𝐾 ∪ {1, 𝑀})
9998, 51eqtrid 2789 . . . . . . . . 9 (𝜑 → ({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)))
100 incom 4209 . . . . . . . . . . 11 ({1, 𝑀} ∩ 𝐾) = (𝐾 ∩ {1, 𝑀})
10150simp1d 1143 . . . . . . . . . . 11 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
102100, 101eqtrid 2789 . . . . . . . . . 10 (𝜑 → ({1, 𝑀} ∩ 𝐾) = ∅)
103 uneqdifeq 4493 . . . . . . . . . 10 (({1, 𝑀} ⊆ (1...(𝑁 + 1)) ∧ ({1, 𝑀} ∩ 𝐾) = ∅) → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾))
10452, 102, 103syl2anc 584 . . . . . . . . 9 (𝜑 → (({1, 𝑀} ∪ 𝐾) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾))
10599, 104mpbid 232 . . . . . . . 8 (𝜑 → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)
106105adantr 480 . . . . . . 7 ((𝜑𝑏𝐵) → ((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾)
107 reseq2 5992 . . . . . . . . 9 (((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾 → (𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})) = (𝑏𝐾))
108107f1oeq1d 6843 . . . . . . . 8 (((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})))
109 f1oeq2 6837 . . . . . . . 8 (((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾 → ((𝑏𝐾):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏𝐾):𝐾1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀})))
110 f1oeq3 6838 . . . . . . . 8 (((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾 → ((𝑏𝐾):𝐾1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏𝐾):𝐾1-1-onto𝐾))
111108, 109, 1103bitrd 305 . . . . . . 7 (((1...(𝑁 + 1)) ∖ {1, 𝑀}) = 𝐾 → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏𝐾):𝐾1-1-onto𝐾))
112106, 111syl 17 . . . . . 6 ((𝜑𝑏𝐵) → ((𝑏 ↾ ((1...(𝑁 + 1)) ∖ {1, 𝑀})):((1...(𝑁 + 1)) ∖ {1, 𝑀})–1-1-onto→((1...(𝑁 + 1)) ∖ {1, 𝑀}) ↔ (𝑏𝐾):𝐾1-1-onto𝐾))
11397, 112mpbid 232 . . . . 5 ((𝜑𝑏𝐵) → (𝑏𝐾):𝐾1-1-onto𝐾)
114 ssun1 4178 . . . . . . . 8 𝐾 ⊆ (𝐾 ∪ {1, 𝑀})
115114, 51sseqtrid 4026 . . . . . . 7 (𝜑𝐾 ⊆ (1...(𝑁 + 1)))
116115adantr 480 . . . . . 6 ((𝜑𝑏𝐵) → 𝐾 ⊆ (1...(𝑁 + 1)))
11729simprd 495 . . . . . 6 ((𝜑𝑏𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦)
118 ssralv 4052 . . . . . 6 (𝐾 ⊆ (1...(𝑁 + 1)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) ≠ 𝑦 → ∀𝑦𝐾 (𝑏𝑦) ≠ 𝑦))
119116, 117, 118sylc 65 . . . . 5 ((𝜑𝑏𝐵) → ∀𝑦𝐾 (𝑏𝑦) ≠ 𝑦)
12022resex 6047 . . . . . 6 (𝑏𝐾) ∈ V
121 f1oeq1 6836 . . . . . . 7 (𝑓 = (𝑏𝐾) → (𝑓:𝐾1-1-onto𝐾 ↔ (𝑏𝐾):𝐾1-1-onto𝐾))
122 fveq1 6905 . . . . . . . . . 10 (𝑓 = (𝑏𝐾) → (𝑓𝑦) = ((𝑏𝐾)‘𝑦))
123 fvres 6925 . . . . . . . . . 10 (𝑦𝐾 → ((𝑏𝐾)‘𝑦) = (𝑏𝑦))
124122, 123sylan9eq 2797 . . . . . . . . 9 ((𝑓 = (𝑏𝐾) ∧ 𝑦𝐾) → (𝑓𝑦) = (𝑏𝑦))
125124neeq1d 3000 . . . . . . . 8 ((𝑓 = (𝑏𝐾) ∧ 𝑦𝐾) → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑏𝑦) ≠ 𝑦))
126125ralbidva 3176 . . . . . . 7 (𝑓 = (𝑏𝐾) → (∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐾 (𝑏𝑦) ≠ 𝑦))
127121, 126anbi12d 632 . . . . . 6 (𝑓 = (𝑏𝐾) → ((𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦) ↔ ((𝑏𝐾):𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑏𝑦) ≠ 𝑦)))
128 subfacp1lem3.c . . . . . 6 𝐶 = {𝑓 ∣ (𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦)}
129120, 127, 128elab2 3682 . . . . 5 ((𝑏𝐾) ∈ 𝐶 ↔ ((𝑏𝐾):𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑏𝑦) ≠ 𝑦))
130113, 119, 129sylanbrc 583 . . . 4 ((𝜑𝑏𝐵) → (𝑏𝐾) ∈ 𝐶)
13146adantr 480 . . . . . . . 8 ((𝜑𝑐𝐶) → 𝑁 ∈ ℕ)
13247adantr 480 . . . . . . . 8 ((𝜑𝑐𝐶) → 𝑀 ∈ (2...(𝑁 + 1)))
133 eqid 2737 . . . . . . . 8 (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
134 simpr 484 . . . . . . . . . 10 ((𝜑𝑐𝐶) → 𝑐𝐶)
135 vex 3484 . . . . . . . . . . 11 𝑐 ∈ V
136 f1oeq1 6836 . . . . . . . . . . . 12 (𝑓 = 𝑐 → (𝑓:𝐾1-1-onto𝐾𝑐:𝐾1-1-onto𝐾))
137 fveq1 6905 . . . . . . . . . . . . . 14 (𝑓 = 𝑐 → (𝑓𝑦) = (𝑐𝑦))
138137neeq1d 3000 . . . . . . . . . . . . 13 (𝑓 = 𝑐 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑐𝑦) ≠ 𝑦))
139138ralbidv 3178 . . . . . . . . . . . 12 (𝑓 = 𝑐 → (∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐾 (𝑐𝑦) ≠ 𝑦))
140136, 139anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑐 → ((𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦) ↔ (𝑐:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑐𝑦) ≠ 𝑦)))
141135, 140, 128elab2 3682 . . . . . . . . . 10 (𝑐𝐶 ↔ (𝑐:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑐𝑦) ≠ 𝑦))
142134, 141sylib 218 . . . . . . . . 9 ((𝜑𝑐𝐶) → (𝑐:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑐𝑦) ≠ 𝑦))
143142simpld 494 . . . . . . . 8 ((𝜑𝑐𝐶) → 𝑐:𝐾1-1-onto𝐾)
14444, 45, 1, 131, 132, 48, 49, 133, 143subfacp1lem2a 35185 . . . . . . 7 ((𝜑𝑐𝐶) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀 ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1))
145144simp1d 1143 . . . . . 6 ((𝜑𝑐𝐶) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
14644, 45, 1, 131, 132, 48, 49, 133, 143subfacp1lem2b 35186 . . . . . . . . . 10 (((𝜑𝑐𝐶) ∧ 𝑦𝐾) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) = (𝑐𝑦))
147142simprd 495 . . . . . . . . . . 11 ((𝜑𝑐𝐶) → ∀𝑦𝐾 (𝑐𝑦) ≠ 𝑦)
148147r19.21bi 3251 . . . . . . . . . 10 (((𝜑𝑐𝐶) ∧ 𝑦𝐾) → (𝑐𝑦) ≠ 𝑦)
149146, 148eqnetrd 3008 . . . . . . . . 9 (((𝜑𝑐𝐶) ∧ 𝑦𝐾) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)
150149ralrimiva 3146 . . . . . . . 8 ((𝜑𝑐𝐶) → ∀𝑦𝐾 ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)
151144simp2d 1144 . . . . . . . . . 10 ((𝜑𝑐𝐶) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀)
152 elfzuz 13560 . . . . . . . . . . . 12 (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ∈ (ℤ‘2))
153 eluz2b3 12964 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
154153simprbi 496 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘2) → 𝑀 ≠ 1)
15547, 152, 1543syl 18 . . . . . . . . . . 11 (𝜑𝑀 ≠ 1)
156155adantr 480 . . . . . . . . . 10 ((𝜑𝑐𝐶) → 𝑀 ≠ 1)
157151, 156eqnetrd 3008 . . . . . . . . 9 ((𝜑𝑐𝐶) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) ≠ 1)
158144simp3d 1145 . . . . . . . . . 10 ((𝜑𝑐𝐶) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1)
159156necomd 2996 . . . . . . . . . 10 ((𝜑𝑐𝐶) → 1 ≠ 𝑀)
160158, 159eqnetrd 3008 . . . . . . . . 9 ((𝜑𝑐𝐶) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) ≠ 𝑀)
161 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1))
162 id 22 . . . . . . . . . . 11 (𝑦 = 1 → 𝑦 = 1)
163161, 162neeq12d 3002 . . . . . . . . . 10 (𝑦 = 1 → (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) ≠ 1))
164 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑀 → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀))
165 id 22 . . . . . . . . . . 11 (𝑦 = 𝑀𝑦 = 𝑀)
166164, 165neeq12d 3002 . . . . . . . . . 10 (𝑦 = 𝑀 → (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) ≠ 𝑀))
16760, 48, 163, 166ralpr 4700 . . . . . . . . 9 (∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦 ↔ (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) ≠ 1 ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) ≠ 𝑀))
168157, 160, 167sylanbrc 583 . . . . . . . 8 ((𝜑𝑐𝐶) → ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)
169 ralunb 4197 . . . . . . . 8 (∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦 ↔ (∀𝑦𝐾 ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦 ∧ ∀𝑦 ∈ {1, 𝑀} ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦))
170150, 168, 169sylanbrc 583 . . . . . . 7 ((𝜑𝑐𝐶) → ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)
17151adantr 480 . . . . . . 7 ((𝜑𝑐𝐶) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
172170, 171raleqtrdv 3328 . . . . . 6 ((𝜑𝑐𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)
173 prex 5437 . . . . . . . 8 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ∈ V
174135, 173unex 7764 . . . . . . 7 (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ V
175 f1oeq1 6836 . . . . . . . 8 (𝑓 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
176 fveq1 6905 . . . . . . . . . 10 (𝑓 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝑓𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦))
177176neeq1d 3000 . . . . . . . . 9 (𝑓 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → ((𝑓𝑦) ≠ 𝑦 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦))
178177ralbidv 3178 . . . . . . . 8 (𝑓 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦))
179175, 178anbi12d 632 . . . . . . 7 (𝑓 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦) ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦)))
180174, 179, 1elab2 3682 . . . . . 6 ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ 𝐴 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ≠ 𝑦))
181145, 172, 180sylanbrc 583 . . . . 5 ((𝜑𝑐𝐶) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ 𝐴)
182151, 158jca 511 . . . . 5 ((𝜑𝑐𝐶) → (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀 ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1))
183 fveq1 6905 . . . . . . . 8 (𝑔 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝑔‘1) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1))
184183eqeq1d 2739 . . . . . . 7 (𝑔 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → ((𝑔‘1) = 𝑀 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀))
185 fveq1 6905 . . . . . . . 8 (𝑔 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝑔𝑀) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀))
186185eqeq1d 2739 . . . . . . 7 (𝑔 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → ((𝑔𝑀) = 1 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1))
187184, 186anbi12d 632 . . . . . 6 (𝑔 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) = 1) ↔ (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀 ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1)))
188187, 6elrab2 3695 . . . . 5 ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ 𝐵 ↔ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ 𝐴 ∧ (((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀 ∧ ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1)))
189181, 182, 188sylanbrc 583 . . . 4 ((𝜑𝑐𝐶) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ∈ 𝐵)
19056adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏‘1) = 𝑀)
191151adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) = 𝑀)
192190, 191eqtr4d 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏‘1) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1))
19359adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏𝑀) = 1)
194158adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀) = 1)
195193, 194eqtr4d 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏𝑀) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀))
196 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = 1 → (𝑏𝑦) = (𝑏‘1))
197196, 161eqeq12d 2753 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ (𝑏‘1) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1)))
198 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = 𝑀 → (𝑏𝑦) = (𝑏𝑀))
199198, 164eqeq12d 2753 . . . . . . . . . . 11 (𝑦 = 𝑀 → ((𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ (𝑏𝑀) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀)))
20060, 48, 197, 199ralpr 4700 . . . . . . . . . 10 (∀𝑦 ∈ {1, 𝑀} (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ((𝑏‘1) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘1) ∧ (𝑏𝑀) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑀)))
201192, 195, 200sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → ∀𝑦 ∈ {1, 𝑀} (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦))
202201biantrud 531 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦))))
203 ralunb 4197 . . . . . . . 8 (∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ∧ ∀𝑦 ∈ {1, 𝑀} (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦)))
204202, 203bitr4di 289 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦)))
205146eqeq2d 2748 . . . . . . . . 9 (((𝜑𝑐𝐶) ∧ 𝑦𝐾) → ((𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ (𝑏𝑦) = (𝑐𝑦)))
206205ralbidva 3176 . . . . . . . 8 ((𝜑𝑐𝐶) → (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦𝐾 (𝑏𝑦) = (𝑐𝑦)))
207206adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦𝐾 (𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦𝐾 (𝑏𝑦) = (𝑐𝑦)))
20851adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
209208raleqdv 3326 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦 ∈ (𝐾 ∪ {1, 𝑀})(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦)))
210204, 207, 2093bitr3rd 310 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦𝐾 (𝑏𝑦) = (𝑐𝑦)))
211123eqeq2d 2748 . . . . . . . 8 (𝑦𝐾 → ((𝑐𝑦) = ((𝑏𝐾)‘𝑦) ↔ (𝑐𝑦) = (𝑏𝑦)))
212 eqcom 2744 . . . . . . . 8 ((𝑐𝑦) = (𝑏𝑦) ↔ (𝑏𝑦) = (𝑐𝑦))
213211, 212bitrdi 287 . . . . . . 7 (𝑦𝐾 → ((𝑐𝑦) = ((𝑏𝐾)‘𝑦) ↔ (𝑏𝑦) = (𝑐𝑦)))
214213ralbiia 3091 . . . . . 6 (∀𝑦𝐾 (𝑐𝑦) = ((𝑏𝐾)‘𝑦) ↔ ∀𝑦𝐾 (𝑏𝑦) = (𝑐𝑦))
215210, 214bitr4di 289 . . . . 5 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦) ↔ ∀𝑦𝐾 (𝑐𝑦) = ((𝑏𝐾)‘𝑦)))
21636adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → 𝑏 Fn (1...(𝑁 + 1)))
217145adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
218 f1ofn 6849 . . . . . . 7 ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) Fn (1...(𝑁 + 1)))
219217, 218syl 17 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) Fn (1...(𝑁 + 1)))
220 eqfnfv 7051 . . . . . 6 ((𝑏 Fn (1...(𝑁 + 1)) ∧ (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) Fn (1...(𝑁 + 1))) → (𝑏 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦)))
221216, 219, 220syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏𝑦) = ((𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})‘𝑦)))
222143adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → 𝑐:𝐾1-1-onto𝐾)
223 f1ofn 6849 . . . . . . 7 (𝑐:𝐾1-1-onto𝐾𝑐 Fn 𝐾)
224222, 223syl 17 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → 𝑐 Fn 𝐾)
225115adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → 𝐾 ⊆ (1...(𝑁 + 1)))
226216, 225fnssresd 6692 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏𝐾) Fn 𝐾)
227 eqfnfv 7051 . . . . . 6 ((𝑐 Fn 𝐾 ∧ (𝑏𝐾) Fn 𝐾) → (𝑐 = (𝑏𝐾) ↔ ∀𝑦𝐾 (𝑐𝑦) = ((𝑏𝐾)‘𝑦)))
228224, 226, 227syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑐 = (𝑏𝐾) ↔ ∀𝑦𝐾 (𝑐𝑦) = ((𝑏𝐾)‘𝑦)))
229215, 221, 2283bitr4d 311 . . . 4 ((𝜑 ∧ (𝑏𝐵𝑐𝐶)) → (𝑏 = (𝑐 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) ↔ 𝑐 = (𝑏𝐾)))
23012, 130, 189, 229f1o2d 7687 . . 3 (𝜑 → (𝑏𝐵 ↦ (𝑏𝐾)):𝐵1-1-onto𝐶)
23111, 230hasheqf1od 14392 . 2 (𝜑 → (♯‘𝐵) = (♯‘𝐶))
232128fveq2i 6909 . . . 4 (♯‘𝐶) = (♯‘{𝑓 ∣ (𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦)})
233 fzfi 14013 . . . . . . 7 (2...(𝑁 + 1)) ∈ Fin
234 diffi 9215 . . . . . . 7 ((2...(𝑁 + 1)) ∈ Fin → ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin)
235233, 234ax-mp 5 . . . . . 6 ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin
23649, 235eqeltri 2837 . . . . 5 𝐾 ∈ Fin
23744derangval 35172 . . . . 5 (𝐾 ∈ Fin → (𝐷𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦)}))
238236, 237ax-mp 5 . . . 4 (𝐷𝐾) = (♯‘{𝑓 ∣ (𝑓:𝐾1-1-onto𝐾 ∧ ∀𝑦𝐾 (𝑓𝑦) ≠ 𝑦)})
23944, 45derangen2 35179 . . . . 5 (𝐾 ∈ Fin → (𝐷𝐾) = (𝑆‘(♯‘𝐾)))
240236, 239ax-mp 5 . . . 4 (𝐷𝐾) = (𝑆‘(♯‘𝐾))
241232, 238, 2403eqtr2ri 2772 . . 3 (𝑆‘(♯‘𝐾)) = (♯‘𝐶)
24250simp3d 1145 . . . 4 (𝜑 → (♯‘𝐾) = (𝑁 − 1))
243242fveq2d 6910 . . 3 (𝜑 → (𝑆‘(♯‘𝐾)) = (𝑆‘(𝑁 − 1)))
244241, 243eqtr3id 2791 . 2 (𝜑 → (♯‘𝐶) = (𝑆‘(𝑁 − 1)))
245231, 244eqtrd 2777 1 (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  cop 4632  cmpt 5225  ccnv 5684  cres 5687  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Fincfn 8985  1c1 11156   + caddc 11158  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cuz 12878  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  subfacp1lem6  35190
  Copyright terms: Public domain W3C validator