MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknewwlksn Structured version   Visualization version   GIF version

Theorem wlknewwlksn 29408
Description: If a walk in a pseudograph has length 𝑁, then the sequence of the vertices of the walk is a word representing the walk as word of length 𝑁. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
wlknewwlksn (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺))

Proof of Theorem wlknewwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkcpr 29153 . . . . . 6 (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))
2 wlkn0 29145 . . . . . 6 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
31, 2sylbi 216 . . . . 5 (π‘Š ∈ (Walksβ€˜πΊ) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
43adantl 480 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
5 eqid 2730 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
6 eqid 2730 . . . . . . 7 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
7 eqid 2730 . . . . . . 7 (1st β€˜π‘Š) = (1st β€˜π‘Š)
8 eqid 2730 . . . . . . 7 (2nd β€˜π‘Š) = (2nd β€˜π‘Š)
95, 6, 7, 8wlkelwrd 29157 . . . . . 6 (π‘Š ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)))
10 ffz0iswrd 14495 . . . . . . 7 ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
1110adantl 480 . . . . . 6 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
129, 11syl 17 . . . . 5 (π‘Š ∈ (Walksβ€˜πΊ) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
1312adantl 480 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
14 eqid 2730 . . . . . . 7 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
1514upgrwlkvtxedg 29169 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘Š))){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
16 wlklenvm1 29146 . . . . . . . . 9 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ (β™―β€˜(1st β€˜π‘Š)) = ((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1))
1716adantl 480 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (β™―β€˜(1st β€˜π‘Š)) = ((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1))
1817oveq2d 7427 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (0..^(β™―β€˜(1st β€˜π‘Š))) = (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)))
1918raleqdv 3323 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘Š))){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
2015, 19mpbid 231 . . . . 5 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
211, 20sylan2b 592 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
224, 13, 213jca 1126 . . 3 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
2322adantr 479 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
24 simpl 481 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ 𝑁 ∈ β„•0)
25 oveq2 7419 . . . . . . . . . . . . 13 ((β™―β€˜(1st β€˜π‘Š)) = 𝑁 β†’ (0...(β™―β€˜(1st β€˜π‘Š))) = (0...𝑁))
2625adantl 480 . . . . . . . . . . . 12 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (0...(β™―β€˜(1st β€˜π‘Š))) = (0...𝑁))
2726feq2d 6702 . . . . . . . . . . 11 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) ↔ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
2827biimpd 228 . . . . . . . . . 10 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
2928impancom 450 . . . . . . . . 9 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘Š)) = 𝑁 β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
3029adantld 489 . . . . . . . 8 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
3130imp 405 . . . . . . 7 ((((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ))
32 ffz0hash 14410 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3324, 31, 32syl2an2 682 . . . . . 6 ((((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3433ex 411 . . . . 5 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
359, 34syl 17 . . . 4 (π‘Š ∈ (Walksβ€˜πΊ) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
3635adantl 480 . . 3 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
3736imp 405 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3824adantl 480 . . 3 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ 𝑁 ∈ β„•0)
39 iswwlksn 29359 . . . 4 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
405, 14iswwlks 29357 . . . . . 6 ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ↔ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4140a1i 11 . . . . 5 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ↔ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))))
4241anbi1d 628 . . . 4 (𝑁 ∈ β„•0 β†’ (((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4339, 42bitrd 278 . . 3 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4438, 43syl 17 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4523, 37, 44mpbir2and 709 1 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  dom cdm 5675  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  0cc0 11112  1c1 11113   + caddc 11115   βˆ’ cmin 11448  β„•0cn0 12476  ...cfz 13488  ..^cfzo 13631  β™―chash 14294  Word cword 14468  Vtxcvtx 28523  iEdgciedg 28524  Edgcedg 28574  UPGraphcupgr 28607  Walkscwlks 29120  WWalkscwwlks 29346   WWalksN cwwlksn 29347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-edg 28575  df-uhgr 28585  df-upgr 28609  df-wlks 29123  df-wwlks 29351  df-wwlksn 29352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator