MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknewwlksn Structured version   Visualization version   GIF version

Theorem wlknewwlksn 29920
Description: If a walk in a pseudograph has length 𝑁, then the sequence of the vertices of the walk is a word representing the walk as word of length 𝑁. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
wlknewwlksn (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → (2nd𝑊) ∈ (𝑁 WWalksN 𝐺))

Proof of Theorem wlknewwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkcpr 29665 . . . . . 6 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 wlkn0 29657 . . . . . 6 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊) ≠ ∅)
31, 2sylbi 217 . . . . 5 (𝑊 ∈ (Walks‘𝐺) → (2nd𝑊) ≠ ∅)
43adantl 481 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (2nd𝑊) ≠ ∅)
5 eqid 2740 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2740 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
7 eqid 2740 . . . . . . 7 (1st𝑊) = (1st𝑊)
8 eqid 2740 . . . . . . 7 (2nd𝑊) = (2nd𝑊)
95, 6, 7, 8wlkelwrd 29669 . . . . . 6 (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)))
10 ffz0iswrd 14589 . . . . . . 7 ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
1110adantl 481 . . . . . 6 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
129, 11syl 17 . . . . 5 (𝑊 ∈ (Walks‘𝐺) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
1312adantl 481 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
14 eqid 2740 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
1514upgrwlkvtxedg 29681 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → ∀𝑖 ∈ (0..^(♯‘(1st𝑊))){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
16 wlklenvm1 29658 . . . . . . . 8 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (♯‘(1st𝑊)) = ((♯‘(2nd𝑊)) − 1))
1716adantl 481 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → (♯‘(1st𝑊)) = ((♯‘(2nd𝑊)) − 1))
1817oveq2d 7464 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → (0..^(♯‘(1st𝑊))) = (0..^((♯‘(2nd𝑊)) − 1)))
1915, 18raleqtrdv 3336 . . . . 5 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
201, 19sylan2b 593 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
214, 13, 203jca 1128 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2221adantr 480 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
23 simpl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁) → 𝑁 ∈ ℕ0)
24 oveq2 7456 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) = 𝑁 → (0...(♯‘(1st𝑊))) = (0...𝑁))
2524adantl 481 . . . . . . . . . . . 12 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (♯‘(1st𝑊)) = 𝑁) → (0...(♯‘(1st𝑊))) = (0...𝑁))
2625feq2d 6733 . . . . . . . . . . 11 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (♯‘(1st𝑊)) = 𝑁) → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
2726biimpd 229 . . . . . . . . . 10 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (♯‘(1st𝑊)) = 𝑁) → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
2827impancom 451 . . . . . . . . 9 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((♯‘(1st𝑊)) = 𝑁 → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
2928adantld 490 . . . . . . . 8 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
3029imp 406 . . . . . . 7 ((((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺))
31 ffz0hash 14496 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)) → (♯‘(2nd𝑊)) = (𝑁 + 1))
3223, 30, 31syl2an2 685 . . . . . 6 ((((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → (♯‘(2nd𝑊)) = (𝑁 + 1))
3332ex 412 . . . . 5 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁) → (♯‘(2nd𝑊)) = (𝑁 + 1)))
349, 33syl 17 . . . 4 (𝑊 ∈ (Walks‘𝐺) → ((𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁) → (♯‘(2nd𝑊)) = (𝑁 + 1)))
3534adantl 481 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁) → (♯‘(2nd𝑊)) = (𝑁 + 1)))
3635imp 406 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → (♯‘(2nd𝑊)) = (𝑁 + 1))
3723adantl 481 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → 𝑁 ∈ ℕ0)
38 iswwlksn 29871 . . . 4 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ ((2nd𝑊) ∈ (WWalks‘𝐺) ∧ (♯‘(2nd𝑊)) = (𝑁 + 1))))
395, 14iswwlks 29869 . . . . . 6 ((2nd𝑊) ∈ (WWalks‘𝐺) ↔ ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4039a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (WWalks‘𝐺) ↔ ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
4140anbi1d 630 . . . 4 (𝑁 ∈ ℕ0 → (((2nd𝑊) ∈ (WWalks‘𝐺) ∧ (♯‘(2nd𝑊)) = (𝑁 + 1)) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(2nd𝑊)) = (𝑁 + 1))))
4238, 41bitrd 279 . . 3 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(2nd𝑊)) = (𝑁 + 1))))
4337, 42syl 17 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(2nd𝑊)) = (𝑁 + 1))))
4422, 36, 43mpbir2and 712 1 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘(1st𝑊)) = 𝑁)) → (2nd𝑊) ∈ (𝑁 WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352  {cpr 4650   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UPGraphcupgr 29115  Walkscwlks 29632  WWalkscwwlks 29858   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-wlks 29635  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator