MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknewwlksn Structured version   Visualization version   GIF version

Theorem wlknewwlksn 29130
Description: If a walk in a pseudograph has length 𝑁, then the sequence of the vertices of the walk is a word representing the walk as word of length 𝑁. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
wlknewwlksn (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺))

Proof of Theorem wlknewwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkcpr 28875 . . . . . 6 (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))
2 wlkn0 28867 . . . . . 6 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
31, 2sylbi 216 . . . . 5 (π‘Š ∈ (Walksβ€˜πΊ) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
43adantl 482 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ (2nd β€˜π‘Š) β‰  βˆ…)
5 eqid 2732 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
6 eqid 2732 . . . . . . 7 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
7 eqid 2732 . . . . . . 7 (1st β€˜π‘Š) = (1st β€˜π‘Š)
8 eqid 2732 . . . . . . 7 (2nd β€˜π‘Š) = (2nd β€˜π‘Š)
95, 6, 7, 8wlkelwrd 28879 . . . . . 6 (π‘Š ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)))
10 ffz0iswrd 14487 . . . . . . 7 ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
1110adantl 482 . . . . . 6 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
129, 11syl 17 . . . . 5 (π‘Š ∈ (Walksβ€˜πΊ) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
1312adantl 482 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ))
14 eqid 2732 . . . . . . 7 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
1514upgrwlkvtxedg 28891 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘Š))){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
16 wlklenvm1 28868 . . . . . . . . 9 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ (β™―β€˜(1st β€˜π‘Š)) = ((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1))
1716adantl 482 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (β™―β€˜(1st β€˜π‘Š)) = ((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1))
1817oveq2d 7421 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (0..^(β™―β€˜(1st β€˜π‘Š))) = (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)))
1918raleqdv 3325 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘Š))){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
2015, 19mpbid 231 . . . . 5 ((𝐺 ∈ UPGraph ∧ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
211, 20sylan2b 594 . . . 4 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
224, 13, 213jca 1128 . . 3 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
2322adantr 481 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
24 simpl 483 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ 𝑁 ∈ β„•0)
25 oveq2 7413 . . . . . . . . . . . . 13 ((β™―β€˜(1st β€˜π‘Š)) = 𝑁 β†’ (0...(β™―β€˜(1st β€˜π‘Š))) = (0...𝑁))
2625adantl 482 . . . . . . . . . . . 12 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (0...(β™―β€˜(1st β€˜π‘Š))) = (0...𝑁))
2726feq2d 6700 . . . . . . . . . . 11 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) ↔ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
2827biimpd 228 . . . . . . . . . 10 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ ((2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
2928impancom 452 . . . . . . . . 9 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘Š)) = 𝑁 β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
3029adantld 491 . . . . . . . 8 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)))
3130imp 407 . . . . . . 7 ((((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ))
32 ffz0hash 14402 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ (2nd β€˜π‘Š):(0...𝑁)⟢(Vtxβ€˜πΊ)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3324, 31, 32syl2an2 684 . . . . . 6 ((((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3433ex 413 . . . . 5 (((1st β€˜π‘Š) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π‘Š):(0...(β™―β€˜(1st β€˜π‘Š)))⟢(Vtxβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
359, 34syl 17 . . . 4 (π‘Š ∈ (Walksβ€˜πΊ) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
3635adantl 482 . . 3 ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) β†’ ((𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)))
3736imp 407 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))
3824adantl 482 . . 3 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ 𝑁 ∈ β„•0)
39 iswwlksn 29081 . . . 4 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
405, 14iswwlks 29079 . . . . . 6 ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ↔ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4140a1i 11 . . . . 5 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ↔ ((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))))
4241anbi1d 630 . . . 4 (𝑁 ∈ β„•0 β†’ (((2nd β€˜π‘Š) ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1)) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4339, 42bitrd 278 . . 3 (𝑁 ∈ β„•0 β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4438, 43syl 17 . 2 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ ((2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd β€˜π‘Š) β‰  βˆ… ∧ (2nd β€˜π‘Š) ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(2nd β€˜π‘Š)) βˆ’ 1)){((2nd β€˜π‘Š)β€˜π‘–), ((2nd β€˜π‘Š)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜(2nd β€˜π‘Š)) = (𝑁 + 1))))
4523, 37, 44mpbir2and 711 1 (((𝐺 ∈ UPGraph ∧ π‘Š ∈ (Walksβ€˜πΊ)) ∧ (𝑁 ∈ β„•0 ∧ (β™―β€˜(1st β€˜π‘Š)) = 𝑁)) β†’ (2nd β€˜π‘Š) ∈ (𝑁 WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•0cn0 12468  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  UPGraphcupgr 28329  Walkscwlks 28842  WWalkscwwlks 29068   WWalksN cwwlksn 29069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-wlks 28845  df-wwlks 29073  df-wwlksn 29074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator