Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd3 Structured version   Visualization version   GIF version

Theorem brtxpsd3 35890
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
brtxpsd3.5 (𝑥𝑋𝑥𝑆𝐴)
Assertion
Ref Expression
brtxpsd3 (𝐴𝑅𝐵𝐵 = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd3
StepHypRef Expression
1 brtxpsd3.5 . . . 4 (𝑥𝑋𝑥𝑆𝐴)
21bibi2i 337 . . 3 ((𝑥𝐵𝑥𝑋) ↔ (𝑥𝐵𝑥𝑆𝐴))
32albii 1819 . 2 (∀𝑥(𝑥𝐵𝑥𝑋) ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
4 dfcleq 2722 . 2 (𝐵 = 𝑋 ↔ ∀𝑥(𝑥𝐵𝑥𝑋))
5 brtxpsd2.1 . . 3 𝐴 ∈ V
6 brtxpsd2.2 . . 3 𝐵 ∈ V
7 brtxpsd2.3 . . 3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
8 brtxpsd2.4 . . 3 𝐴𝐶𝐵
95, 6, 7, 8brtxpsd2 35889 . 2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
103, 4, 93bitr4ri 304 1 (𝐴𝑅𝐵𝐵 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  csymdif 4203   class class class wbr 5092   E cep 5518  ran crn 5620  ctxp 35824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-symdif 4204  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-1st 7924  df-2nd 7925  df-txp 35848
This theorem is referenced by:  brbigcup  35892  brsingle  35911  brimage  35920  brcart  35926  brapply  35932  brcup  35933  brcap  35934
  Copyright terms: Public domain W3C validator