Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd3 | Structured version Visualization version GIF version |
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brtxpsd2.1 | ⊢ 𝐴 ∈ V |
brtxpsd2.2 | ⊢ 𝐵 ∈ V |
brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
brtxpsd3.5 | ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) |
Ref | Expression |
---|---|
brtxpsd3 | ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxpsd3.5 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) | |
2 | 1 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
3 | 2 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
4 | dfcleq 2731 | . 2 ⊢ (𝐵 = 𝑋 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋)) | |
5 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
7 | brtxpsd2.3 | . . 3 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
8 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
9 | 5, 6, 7, 8 | brtxpsd2 34124 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
10 | 3, 4, 9 | 3bitr4ri 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 △ csymdif 4172 class class class wbr 5070 E cep 5485 ran crn 5581 ⊗ ctxp 34059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 |
This theorem is referenced by: brbigcup 34127 brsingle 34146 brimage 34155 brcart 34161 brapply 34167 brcup 34168 brcap 34169 |
Copyright terms: Public domain | W3C validator |