Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd3 Structured version   Visualization version   GIF version

Theorem brtxpsd3 35884
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
brtxpsd3.5 (𝑥𝑋𝑥𝑆𝐴)
Assertion
Ref Expression
brtxpsd3 (𝐴𝑅𝐵𝐵 = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd3
StepHypRef Expression
1 brtxpsd3.5 . . . 4 (𝑥𝑋𝑥𝑆𝐴)
21bibi2i 337 . . 3 ((𝑥𝐵𝑥𝑋) ↔ (𝑥𝐵𝑥𝑆𝐴))
32albii 1819 . 2 (∀𝑥(𝑥𝐵𝑥𝑋) ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
4 dfcleq 2722 . 2 (𝐵 = 𝑋 ↔ ∀𝑥(𝑥𝐵𝑥𝑋))
5 brtxpsd2.1 . . 3 𝐴 ∈ V
6 brtxpsd2.2 . . 3 𝐵 ∈ V
7 brtxpsd2.3 . . 3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
8 brtxpsd2.4 . . 3 𝐴𝐶𝐵
95, 6, 7, 8brtxpsd2 35883 . 2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
103, 4, 93bitr4ri 304 1 (𝐴𝑅𝐵𝐵 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  csymdif 4215   class class class wbr 5107   E cep 5537  ran crn 5639  ctxp 35818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842
This theorem is referenced by:  brbigcup  35886  brsingle  35905  brimage  35914  brcart  35920  brapply  35926  brcup  35927  brcap  35928
  Copyright terms: Public domain W3C validator