Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd3 Structured version   Visualization version   GIF version

Theorem brtxpsd3 35877
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
brtxpsd3.5 (𝑥𝑋𝑥𝑆𝐴)
Assertion
Ref Expression
brtxpsd3 (𝐴𝑅𝐵𝐵 = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd3
StepHypRef Expression
1 brtxpsd3.5 . . . 4 (𝑥𝑋𝑥𝑆𝐴)
21bibi2i 337 . . 3 ((𝑥𝐵𝑥𝑋) ↔ (𝑥𝐵𝑥𝑆𝐴))
32albii 1819 . 2 (∀𝑥(𝑥𝐵𝑥𝑋) ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
4 dfcleq 2722 . 2 (𝐵 = 𝑋 ↔ ∀𝑥(𝑥𝐵𝑥𝑋))
5 brtxpsd2.1 . . 3 𝐴 ∈ V
6 brtxpsd2.2 . . 3 𝐵 ∈ V
7 brtxpsd2.3 . . 3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
8 brtxpsd2.4 . . 3 𝐴𝐶𝐵
95, 6, 7, 8brtxpsd2 35876 . 2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
103, 4, 93bitr4ri 304 1 (𝐴𝑅𝐵𝐵 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  csymdif 4211   class class class wbr 5102   E cep 5530  ran crn 5632  ctxp 35811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35835
This theorem is referenced by:  brbigcup  35879  brsingle  35898  brimage  35907  brcart  35913  brapply  35919  brcup  35920  brcap  35921
  Copyright terms: Public domain W3C validator