| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd3 | Structured version Visualization version GIF version | ||
| Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| brtxpsd2.1 | ⊢ 𝐴 ∈ V |
| brtxpsd2.2 | ⊢ 𝐵 ∈ V |
| brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
| brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
| brtxpsd3.5 | ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) |
| Ref | Expression |
|---|---|
| brtxpsd3 | ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd3.5 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) | |
| 2 | 1 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 4 | dfcleq 2723 | . 2 ⊢ (𝐵 = 𝑋 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋)) | |
| 5 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 7 | brtxpsd2.3 | . . 3 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
| 8 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
| 9 | 5, 6, 7, 8 | brtxpsd2 35890 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 10 | 3, 4, 9 | 3bitr4ri 304 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 △ csymdif 4218 class class class wbr 5110 E cep 5540 ran crn 5642 ⊗ ctxp 35825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-symdif 4219 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 |
| This theorem is referenced by: brbigcup 35893 brsingle 35912 brimage 35921 brcart 35927 brapply 35933 brcup 35934 brcap 35935 |
| Copyright terms: Public domain | W3C validator |