![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd3 | Structured version Visualization version GIF version |
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brtxpsd2.1 | ⊢ 𝐴 ∈ V |
brtxpsd2.2 | ⊢ 𝐵 ∈ V |
brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
brtxpsd3.5 | ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) |
Ref | Expression |
---|---|
brtxpsd3 | ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxpsd3.5 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) | |
2 | 1 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
3 | 2 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
4 | dfcleq 2733 | . 2 ⊢ (𝐵 = 𝑋 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋)) | |
5 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
7 | brtxpsd2.3 | . . 3 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
8 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
9 | 5, 6, 7, 8 | brtxpsd2 35859 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
10 | 3, 4, 9 | 3bitr4ri 304 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 △ csymdif 4271 class class class wbr 5166 E cep 5598 ran crn 5701 ⊗ ctxp 35794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 |
This theorem is referenced by: brbigcup 35862 brsingle 35881 brimage 35890 brcart 35896 brapply 35902 brcup 35903 brcap 35904 |
Copyright terms: Public domain | W3C validator |