Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd3 Structured version   Visualization version   GIF version

Theorem brtxpsd3 35919
Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
brtxpsd3.5 (𝑥𝑋𝑥𝑆𝐴)
Assertion
Ref Expression
brtxpsd3 (𝐴𝑅𝐵𝐵 = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd3
StepHypRef Expression
1 brtxpsd3.5 . . . 4 (𝑥𝑋𝑥𝑆𝐴)
21bibi2i 337 . . 3 ((𝑥𝐵𝑥𝑋) ↔ (𝑥𝐵𝑥𝑆𝐴))
32albii 1819 . 2 (∀𝑥(𝑥𝐵𝑥𝑋) ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
4 dfcleq 2729 . 2 (𝐵 = 𝑋 ↔ ∀𝑥(𝑥𝐵𝑥𝑋))
5 brtxpsd2.1 . . 3 𝐴 ∈ V
6 brtxpsd2.2 . . 3 𝐵 ∈ V
7 brtxpsd2.3 . . 3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
8 brtxpsd2.4 . . 3 𝐴𝐶𝐵
95, 6, 7, 8brtxpsd2 35918 . 2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
103, 4, 93bitr4ri 304 1 (𝐴𝑅𝐵𝐵 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  csymdif 4232   class class class wbr 5124   E cep 5557  ran crn 5660  ctxp 35853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-symdif 4233  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-txp 35877
This theorem is referenced by:  brbigcup  35921  brsingle  35940  brimage  35949  brcart  35955  brapply  35961  brcup  35962  brcap  35963
  Copyright terms: Public domain W3C validator