| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd3 | Structured version Visualization version GIF version | ||
| Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| brtxpsd2.1 | ⊢ 𝐴 ∈ V |
| brtxpsd2.2 | ⊢ 𝐵 ∈ V |
| brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
| brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
| brtxpsd3.5 | ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) |
| Ref | Expression |
|---|---|
| brtxpsd3 | ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd3.5 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) | |
| 2 | 1 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 4 | dfcleq 2729 | . 2 ⊢ (𝐵 = 𝑋 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋)) | |
| 5 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 7 | brtxpsd2.3 | . . 3 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
| 8 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
| 9 | 5, 6, 7, 8 | brtxpsd2 35918 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 10 | 3, 4, 9 | 3bitr4ri 304 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 △ csymdif 4232 class class class wbr 5124 E cep 5557 ran crn 5660 ⊗ ctxp 35853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-symdif 4233 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-txp 35877 |
| This theorem is referenced by: brbigcup 35921 brsingle 35940 brimage 35949 brcart 35955 brapply 35961 brcup 35962 brcap 35963 |
| Copyright terms: Public domain | W3C validator |