Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfbigcup2 | Structured version Visualization version GIF version |
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
dfbigcup2 | ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 34199 | . 2 ⊢ Rel Bigcup | |
2 | mptrel 5735 | . 2 ⊢ Rel (𝑥 ∈ V ↦ ∪ 𝑥) | |
3 | eqcom 2745 | . . 3 ⊢ (∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦) | |
4 | vex 3436 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brbigcup 34200 | . . 3 ⊢ (𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧) |
6 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | eleq1w 2821 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V)) | |
8 | unieq 4850 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦) | |
9 | 8 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦)) |
10 | 7, 9 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦))) |
11 | 6 | biantrur 531 | . . . . 5 ⊢ (𝑡 = ∪ 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦)) |
12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ 𝑡 = ∪ 𝑦)) |
13 | eqeq1 2742 | . . . 4 ⊢ (𝑡 = 𝑧 → (𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦)) | |
14 | df-mpt 5158 | . . . 4 ⊢ (𝑥 ∈ V ↦ ∪ 𝑥) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥)} | |
15 | 6, 4, 12, 13, 14 | brab 5456 | . . 3 ⊢ (𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧 ↔ 𝑧 = ∪ 𝑦) |
16 | 3, 5, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 Bigcup 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧) |
17 | 1, 2, 16 | eqbrriv 5701 | 1 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 Bigcup cbigcup 34136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-bigcup 34160 |
This theorem is referenced by: fobigcup 34202 |
Copyright terms: Public domain | W3C validator |