Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   GIF version

Theorem dfbigcup2 34128
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2 Bigcup = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfbigcup2
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 34126 . 2 Rel Bigcup
2 mptrel 5724 . 2 Rel (𝑥 ∈ V ↦ 𝑥)
3 eqcom 2745 . . 3 ( 𝑦 = 𝑧𝑧 = 𝑦)
4 vex 3426 . . . 4 𝑧 ∈ V
54brbigcup 34127 . . 3 (𝑦 Bigcup 𝑧 𝑦 = 𝑧)
6 vex 3426 . . . 4 𝑦 ∈ V
7 eleq1w 2821 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V))
8 unieq 4847 . . . . . . 7 (𝑥 = 𝑦 𝑥 = 𝑦)
98eqeq2d 2749 . . . . . 6 (𝑥 = 𝑦 → (𝑡 = 𝑥𝑡 = 𝑦))
107, 9anbi12d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦)))
116biantrur 530 . . . . 5 (𝑡 = 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦))
1210, 11bitr4di 288 . . . 4 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ 𝑡 = 𝑦))
13 eqeq1 2742 . . . 4 (𝑡 = 𝑧 → (𝑡 = 𝑦𝑧 = 𝑦))
14 df-mpt 5154 . . . 4 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = 𝑥)}
156, 4, 12, 13, 14brab 5449 . . 3 (𝑦(𝑥 ∈ V ↦ 𝑥)𝑧𝑧 = 𝑦)
163, 5, 153bitr4i 302 . 2 (𝑦 Bigcup 𝑧𝑦(𝑥 ∈ V ↦ 𝑥)𝑧)
171, 2, 16eqbrriv 5690 1 Bigcup = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   cuni 4836   class class class wbr 5070  cmpt 5153   Bigcup cbigcup 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-bigcup 34087
This theorem is referenced by:  fobigcup  34129
  Copyright terms: Public domain W3C validator