Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   GIF version

Theorem dfbigcup2 35863
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2 Bigcup = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfbigcup2
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35861 . 2 Rel Bigcup
2 mptrel 5849 . 2 Rel (𝑥 ∈ V ↦ 𝑥)
3 eqcom 2747 . . 3 ( 𝑦 = 𝑧𝑧 = 𝑦)
4 vex 3492 . . . 4 𝑧 ∈ V
54brbigcup 35862 . . 3 (𝑦 Bigcup 𝑧 𝑦 = 𝑧)
6 vex 3492 . . . 4 𝑦 ∈ V
7 eleq1w 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V))
8 unieq 4942 . . . . . . 7 (𝑥 = 𝑦 𝑥 = 𝑦)
98eqeq2d 2751 . . . . . 6 (𝑥 = 𝑦 → (𝑡 = 𝑥𝑡 = 𝑦))
107, 9anbi12d 631 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦)))
116biantrur 530 . . . . 5 (𝑡 = 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦))
1210, 11bitr4di 289 . . . 4 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ 𝑡 = 𝑦))
13 eqeq1 2744 . . . 4 (𝑡 = 𝑧 → (𝑡 = 𝑦𝑧 = 𝑦))
14 df-mpt 5250 . . . 4 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = 𝑥)}
156, 4, 12, 13, 14brab 5562 . . 3 (𝑦(𝑥 ∈ V ↦ 𝑥)𝑧𝑧 = 𝑦)
163, 5, 153bitr4i 303 . 2 (𝑦 Bigcup 𝑧𝑦(𝑥 ∈ V ↦ 𝑥)𝑧)
171, 2, 16eqbrriv 5815 1 Bigcup = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   cuni 4931   class class class wbr 5166  cmpt 5249   Bigcup cbigcup 35798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-bigcup 35822
This theorem is referenced by:  fobigcup  35864
  Copyright terms: Public domain W3C validator