Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   GIF version

Theorem dfbigcup2 35894
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2 Bigcup = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfbigcup2
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35892 . 2 Rel Bigcup
2 mptrel 5791 . 2 Rel (𝑥 ∈ V ↦ 𝑥)
3 eqcom 2737 . . 3 ( 𝑦 = 𝑧𝑧 = 𝑦)
4 vex 3454 . . . 4 𝑧 ∈ V
54brbigcup 35893 . . 3 (𝑦 Bigcup 𝑧 𝑦 = 𝑧)
6 vex 3454 . . . 4 𝑦 ∈ V
7 eleq1w 2812 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V))
8 unieq 4885 . . . . . . 7 (𝑥 = 𝑦 𝑥 = 𝑦)
98eqeq2d 2741 . . . . . 6 (𝑥 = 𝑦 → (𝑡 = 𝑥𝑡 = 𝑦))
107, 9anbi12d 632 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦)))
116biantrur 530 . . . . 5 (𝑡 = 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦))
1210, 11bitr4di 289 . . . 4 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ 𝑡 = 𝑦))
13 eqeq1 2734 . . . 4 (𝑡 = 𝑧 → (𝑡 = 𝑦𝑧 = 𝑦))
14 df-mpt 5192 . . . 4 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = 𝑥)}
156, 4, 12, 13, 14brab 5506 . . 3 (𝑦(𝑥 ∈ V ↦ 𝑥)𝑧𝑧 = 𝑦)
163, 5, 153bitr4i 303 . 2 (𝑦 Bigcup 𝑧𝑦(𝑥 ∈ V ↦ 𝑥)𝑧)
171, 2, 16eqbrriv 5757 1 Bigcup = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   cuni 4874   class class class wbr 5110  cmpt 5191   Bigcup cbigcup 35829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-bigcup 35853
This theorem is referenced by:  fobigcup  35895
  Copyright terms: Public domain W3C validator