![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfbigcup2 | Structured version Visualization version GIF version |
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
dfbigcup2 | ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 32969 | . 2 ⊢ Rel Bigcup | |
2 | mptrel 5590 | . 2 ⊢ Rel (𝑥 ∈ V ↦ ∪ 𝑥) | |
3 | eqcom 2804 | . . 3 ⊢ (∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦) | |
4 | vex 3443 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brbigcup 32970 | . . 3 ⊢ (𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧) |
6 | vex 3443 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | eleq1w 2867 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V)) | |
8 | unieq 4759 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦) | |
9 | 8 | eqeq2d 2807 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦)) |
10 | 7, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦))) |
11 | 6 | biantrur 531 | . . . . 5 ⊢ (𝑡 = ∪ 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦)) |
12 | 10, 11 | syl6bbr 290 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ 𝑡 = ∪ 𝑦)) |
13 | eqeq1 2801 | . . . 4 ⊢ (𝑡 = 𝑧 → (𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦)) | |
14 | df-mpt 5048 | . . . 4 ⊢ (𝑥 ∈ V ↦ ∪ 𝑥) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥)} | |
15 | 6, 4, 12, 13, 14 | brab 5327 | . . 3 ⊢ (𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧 ↔ 𝑧 = ∪ 𝑦) |
16 | 3, 5, 15 | 3bitr4i 304 | . 2 ⊢ (𝑦 Bigcup 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧) |
17 | 1, 2, 16 | eqbrriv 5557 | 1 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1525 ∈ wcel 2083 Vcvv 3440 ∪ cuni 4751 class class class wbr 4968 ↦ cmpt 5047 Bigcup cbigcup 32906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-symdif 4145 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-eprel 5360 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-fo 6238 df-fv 6240 df-1st 7552 df-2nd 7553 df-txp 32926 df-bigcup 32930 |
This theorem is referenced by: fobigcup 32972 |
Copyright terms: Public domain | W3C validator |