Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   GIF version

Theorem dfbigcup2 35875
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2 Bigcup = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfbigcup2
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35873 . 2 Rel Bigcup
2 mptrel 5772 . 2 Rel (𝑥 ∈ V ↦ 𝑥)
3 eqcom 2736 . . 3 ( 𝑦 = 𝑧𝑧 = 𝑦)
4 vex 3442 . . . 4 𝑧 ∈ V
54brbigcup 35874 . . 3 (𝑦 Bigcup 𝑧 𝑦 = 𝑧)
6 vex 3442 . . . 4 𝑦 ∈ V
7 eleq1w 2811 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V))
8 unieq 4872 . . . . . . 7 (𝑥 = 𝑦 𝑥 = 𝑦)
98eqeq2d 2740 . . . . . 6 (𝑥 = 𝑦 → (𝑡 = 𝑥𝑡 = 𝑦))
107, 9anbi12d 632 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦)))
116biantrur 530 . . . . 5 (𝑡 = 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦))
1210, 11bitr4di 289 . . . 4 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ 𝑡 = 𝑦))
13 eqeq1 2733 . . . 4 (𝑡 = 𝑧 → (𝑡 = 𝑦𝑧 = 𝑦))
14 df-mpt 5177 . . . 4 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = 𝑥)}
156, 4, 12, 13, 14brab 5490 . . 3 (𝑦(𝑥 ∈ V ↦ 𝑥)𝑧𝑧 = 𝑦)
163, 5, 153bitr4i 303 . 2 (𝑦 Bigcup 𝑧𝑦(𝑥 ∈ V ↦ 𝑥)𝑧)
171, 2, 16eqbrriv 5738 1 Bigcup = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3438   cuni 4861   class class class wbr 5095  cmpt 5176   Bigcup cbigcup 35810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35830  df-bigcup 35834
This theorem is referenced by:  fobigcup  35876
  Copyright terms: Public domain W3C validator