Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   GIF version

Theorem dfbigcup2 35860
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2 Bigcup = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfbigcup2
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 35858 . 2 Rel Bigcup
2 mptrel 5779 . 2 Rel (𝑥 ∈ V ↦ 𝑥)
3 eqcom 2736 . . 3 ( 𝑦 = 𝑧𝑧 = 𝑦)
4 vex 3448 . . . 4 𝑧 ∈ V
54brbigcup 35859 . . 3 (𝑦 Bigcup 𝑧 𝑦 = 𝑧)
6 vex 3448 . . . 4 𝑦 ∈ V
7 eleq1w 2811 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V))
8 unieq 4878 . . . . . . 7 (𝑥 = 𝑦 𝑥 = 𝑦)
98eqeq2d 2740 . . . . . 6 (𝑥 = 𝑦 → (𝑡 = 𝑥𝑡 = 𝑦))
107, 9anbi12d 632 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦)))
116biantrur 530 . . . . 5 (𝑡 = 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = 𝑦))
1210, 11bitr4di 289 . . . 4 (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = 𝑥) ↔ 𝑡 = 𝑦))
13 eqeq1 2733 . . . 4 (𝑡 = 𝑧 → (𝑡 = 𝑦𝑧 = 𝑦))
14 df-mpt 5184 . . . 4 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = 𝑥)}
156, 4, 12, 13, 14brab 5498 . . 3 (𝑦(𝑥 ∈ V ↦ 𝑥)𝑧𝑧 = 𝑦)
163, 5, 153bitr4i 303 . 2 (𝑦 Bigcup 𝑧𝑦(𝑥 ∈ V ↦ 𝑥)𝑧)
171, 2, 16eqbrriv 5745 1 Bigcup = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3444   cuni 4867   class class class wbr 5102  cmpt 5183   Bigcup cbigcup 35795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35815  df-bigcup 35819
This theorem is referenced by:  fobigcup  35861
  Copyright terms: Public domain W3C validator