![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfbigcup2 | Structured version Visualization version GIF version |
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
dfbigcup2 | ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 35174 | . 2 ⊢ Rel Bigcup | |
2 | mptrel 5825 | . 2 ⊢ Rel (𝑥 ∈ V ↦ ∪ 𝑥) | |
3 | eqcom 2738 | . . 3 ⊢ (∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦) | |
4 | vex 3477 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brbigcup 35175 | . . 3 ⊢ (𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧) |
6 | vex 3477 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | eleq1w 2815 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V)) | |
8 | unieq 4919 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦) | |
9 | 8 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦)) |
10 | 7, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦))) |
11 | 6 | biantrur 530 | . . . . 5 ⊢ (𝑡 = ∪ 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦)) |
12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ 𝑡 = ∪ 𝑦)) |
13 | eqeq1 2735 | . . . 4 ⊢ (𝑡 = 𝑧 → (𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦)) | |
14 | df-mpt 5232 | . . . 4 ⊢ (𝑥 ∈ V ↦ ∪ 𝑥) = {⟨𝑥, 𝑡⟩ ∣ (𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥)} | |
15 | 6, 4, 12, 13, 14 | brab 5543 | . . 3 ⊢ (𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧 ↔ 𝑧 = ∪ 𝑦) |
16 | 3, 5, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 Bigcup 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧) |
17 | 1, 2, 16 | eqbrriv 5791 | 1 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cuni 4908 class class class wbr 5148 ↦ cmpt 5231 Bigcup cbigcup 35111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 df-2nd 7980 df-txp 35131 df-bigcup 35135 |
This theorem is referenced by: fobigcup 35177 |
Copyright terms: Public domain | W3C validator |