| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfbigcup2 | Structured version Visualization version GIF version | ||
| Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| dfbigcup2 | ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup 35937 | . 2 ⊢ Rel Bigcup | |
| 2 | mptrel 5765 | . 2 ⊢ Rel (𝑥 ∈ V ↦ ∪ 𝑥) | |
| 3 | eqcom 2738 | . . 3 ⊢ (∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦) | |
| 4 | vex 3440 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brbigcup 35938 | . . 3 ⊢ (𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧) |
| 6 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | eleq1w 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V)) | |
| 8 | unieq 4870 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦) | |
| 9 | 8 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦)) |
| 10 | 7, 9 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦))) |
| 11 | 6 | biantrur 530 | . . . . 5 ⊢ (𝑡 = ∪ 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦)) |
| 12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ 𝑡 = ∪ 𝑦)) |
| 13 | eqeq1 2735 | . . . 4 ⊢ (𝑡 = 𝑧 → (𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦)) | |
| 14 | df-mpt 5173 | . . . 4 ⊢ (𝑥 ∈ V ↦ ∪ 𝑥) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥)} | |
| 15 | 6, 4, 12, 13, 14 | brab 5483 | . . 3 ⊢ (𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧 ↔ 𝑧 = ∪ 𝑦) |
| 16 | 3, 5, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 Bigcup 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧) |
| 17 | 1, 2, 16 | eqbrriv 5731 | 1 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4859 class class class wbr 5091 ↦ cmpt 5172 Bigcup cbigcup 35874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-symdif 4203 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35894 df-bigcup 35898 |
| This theorem is referenced by: fobigcup 35940 |
| Copyright terms: Public domain | W3C validator |