| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfbigcup2 | Structured version Visualization version GIF version | ||
| Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| dfbigcup2 | ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup 35885 | . 2 ⊢ Rel Bigcup | |
| 2 | mptrel 5788 | . 2 ⊢ Rel (𝑥 ∈ V ↦ ∪ 𝑥) | |
| 3 | eqcom 2736 | . . 3 ⊢ (∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦) | |
| 4 | vex 3451 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brbigcup 35886 | . . 3 ⊢ (𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧) |
| 6 | vex 3451 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | eleq1w 2811 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ V ↔ 𝑦 ∈ V)) | |
| 8 | unieq 4882 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦) | |
| 9 | 8 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦)) |
| 10 | 7, 9 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦))) |
| 11 | 6 | biantrur 530 | . . . . 5 ⊢ (𝑡 = ∪ 𝑦 ↔ (𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦)) |
| 12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥) ↔ 𝑡 = ∪ 𝑦)) |
| 13 | eqeq1 2733 | . . . 4 ⊢ (𝑡 = 𝑧 → (𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦)) | |
| 14 | df-mpt 5189 | . . . 4 ⊢ (𝑥 ∈ V ↦ ∪ 𝑥) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥)} | |
| 15 | 6, 4, 12, 13, 14 | brab 5503 | . . 3 ⊢ (𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧 ↔ 𝑧 = ∪ 𝑦) |
| 16 | 3, 5, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 Bigcup 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ ∪ 𝑥)𝑧) |
| 17 | 1, 2, 16 | eqbrriv 5754 | 1 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 Bigcup cbigcup 35822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-symdif 4216 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-bigcup 35846 |
| This theorem is referenced by: fobigcup 35888 |
| Copyright terms: Public domain | W3C validator |