| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version | ||
| Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4085 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | relss 5726 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3895 ⊆ wss 3898 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-rel 5626 |
| This theorem is referenced by: difopab 5774 fundif 6535 relsdom 8882 opeldifid 32581 gsumhashmul 33048 fundmpss 35832 relbigcup 35960 vvdifopab 38317 |
| Copyright terms: Public domain | W3C validator |