MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldif Structured version   Visualization version   GIF version

Theorem reldif 5778
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem reldif
StepHypRef Expression
1 difss 4099 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 5744 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3911  wss 3914  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-rel 5645
This theorem is referenced by:  difopab  5793  difopabOLD  5794  fundif  6565  relsdom  8925  opeldifid  32528  gsumhashmul  33001  fundmpss  35754  relbigcup  35885  vvdifopab  38249
  Copyright terms: Public domain W3C validator