Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version |
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4072 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | relss 5703 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3889 ⊆ wss 3892 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-rel 5607 |
This theorem is referenced by: difopab 5752 difopabOLD 5753 fundif 6512 relsdom 8771 opeldifid 30987 gsumhashmul 31365 fundmpss 33789 relbigcup 34248 vvdifopab 36470 |
Copyright terms: Public domain | W3C validator |