Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version |
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4039 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | relss 5629 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3857 ⊆ wss 3860 Rel wrel 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-in 3867 df-ss 3877 df-rel 5534 |
This theorem is referenced by: difopab 5676 fundif 6388 relsdom 8539 opeldifid 30465 gsumhashmul 30846 fundmpss 33260 relbigcup 33774 vvdifopab 35987 |
Copyright terms: Public domain | W3C validator |