MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldif Structured version   Visualization version   GIF version

Theorem reldif 5817
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem reldif
StepHypRef Expression
1 difss 4128 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 5783 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3941  wss 3944  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-ss 3961  df-rel 5685
This theorem is referenced by:  difopab  5832  difopabOLD  5833  fundif  6603  relsdom  8971  opeldifid  32468  gsumhashmul  32860  fundmpss  35493  relbigcup  35624  vvdifopab  37862
  Copyright terms: Public domain W3C validator