Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version |
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4070 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | relss 5690 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3888 ⊆ wss 3891 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-rel 5595 |
This theorem is referenced by: difopab 5737 fundif 6479 relsdom 8714 opeldifid 30917 gsumhashmul 31295 fundmpss 33719 relbigcup 34178 vvdifopab 36378 |
Copyright terms: Public domain | W3C validator |