| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version | ||
| Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4086 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | relss 5722 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3899 ⊆ wss 3902 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-rel 5623 |
| This theorem is referenced by: difopab 5770 fundif 6530 relsdom 8876 opeldifid 32574 gsumhashmul 33036 fundmpss 35799 relbigcup 35930 vvdifopab 38294 |
| Copyright terms: Public domain | W3C validator |