| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version | ||
| Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | relss 5747 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3914 ⊆ wss 3917 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-rel 5648 |
| This theorem is referenced by: difopab 5796 difopabOLD 5797 fundif 6568 relsdom 8928 opeldifid 32535 gsumhashmul 33008 fundmpss 35761 relbigcup 35892 vvdifopab 38256 |
| Copyright terms: Public domain | W3C validator |