![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldif | Structured version Visualization version GIF version |
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4159 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | relss 5805 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3973 ⊆ wss 3976 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-rel 5707 |
This theorem is referenced by: difopab 5854 difopabOLD 5855 fundif 6627 relsdom 9010 opeldifid 32621 gsumhashmul 33040 fundmpss 35730 relbigcup 35861 vvdifopab 38216 |
Copyright terms: Public domain | W3C validator |