MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldif Structured version   Visualization version   GIF version

Theorem reldif 5722
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem reldif
StepHypRef Expression
1 difss 4070 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 5690 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3888  wss 3891  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-rel 5595
This theorem is referenced by:  difopab  5737  fundif  6479  relsdom  8714  opeldifid  30917  gsumhashmul  31295  fundmpss  33719  relbigcup  34178  vvdifopab  36378
  Copyright terms: Public domain W3C validator