![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvep | Structured version Visualization version GIF version |
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) |
Ref | Expression |
---|---|
brcnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rele 5851 | . . 3 ⊢ Rel E | |
2 | 1 | relbrcnv 6137 | . 2 ⊢ (𝐴◡ E 𝐵 ↔ 𝐵 E 𝐴) |
3 | epelg 5600 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 E 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 E cep 5598 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: brcnvepres 38223 eccnvepres 38236 eleccnvep 38237 cnvepres 38254 rnxrncnvepres 38356 coss2cnvepres 38374 dfcoels 38386 br1cossincnvepres 38406 br1cossxrncnvepres 38408 dfeldisj5 38677 |
Copyright terms: Public domain | W3C validator |