Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvep Structured version   Visualization version   GIF version

Theorem brcnvep 36177
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.)
Assertion
Ref Expression
brcnvep (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))

Proof of Theorem brcnvep
StepHypRef Expression
1 rele 5714 . . 3 Rel E
21relbrcnv 5992 . 2 (𝐴 E 𝐵𝐵 E 𝐴)
3 epelg 5478 . 2 (𝐴𝑉 → (𝐵 E 𝐴𝐵𝐴))
42, 3syl5bb 286 1 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112   class class class wbr 5069   E cep 5476  ccnv 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pr 5338
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4456  df-sn 4558  df-pr 4560  df-op 4564  df-br 5070  df-opab 5132  df-eprel 5477  df-xp 5574  df-rel 5575  df-cnv 5576
This theorem is referenced by:  brcnvepres  36179  eccnvepres  36188  eleccnvep  36189  cnvepres  36206  rnxrncnvepres  36299  dfcoels  36326  br1cossincnvepres  36341  br1cossxrncnvepres  36343  dfeldisj5  36605
  Copyright terms: Public domain W3C validator