Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvep Structured version   Visualization version   GIF version

Theorem brcnvep 38261
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.)
Assertion
Ref Expression
brcnvep (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))

Proof of Theorem brcnvep
StepHypRef Expression
1 rele 5793 . . 3 Rel E
21relbrcnv 6081 . 2 (𝐴 E 𝐵𝐵 E 𝐴)
3 epelg 5542 . 2 (𝐴𝑉 → (𝐵 E 𝐴𝐵𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5110   E cep 5540  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649
This theorem is referenced by:  brcnvepres  38263  eccnvepres  38275  eleccnvep  38276  cnvepres  38293  brxrncnvep  38366  dmcnvep  38368  rnxrncnvepres  38393  coss2cnvepres  38416  dfcoels  38428  br1cossincnvepres  38448  br1cossxrncnvepres  38450  dfeldisj5  38720
  Copyright terms: Public domain W3C validator