![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvep | Structured version Visualization version GIF version |
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) |
Ref | Expression |
---|---|
brcnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rele 5496 | . . 3 ⊢ Rel E | |
2 | 1 | relbrcnv 5760 | . 2 ⊢ (𝐴◡ E 𝐵 ↔ 𝐵 E 𝐴) |
3 | epelg 5267 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 E 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | syl5bb 275 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2107 class class class wbr 4886 E cep 5265 ◡ccnv 5354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-eprel 5266 df-xp 5361 df-rel 5362 df-cnv 5363 |
This theorem is referenced by: brcnvepres 34666 eccnvepres 34677 eleccnvep 34678 cnvepres 34697 rnxrncnvepres 34786 dfcoels 34813 br1cossincnvepres 34828 br1cossxrncnvepres 34830 |
Copyright terms: Public domain | W3C validator |