Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvep | Structured version Visualization version GIF version |
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) |
Ref | Expression |
---|---|
brcnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rele 5714 | . . 3 ⊢ Rel E | |
2 | 1 | relbrcnv 5992 | . 2 ⊢ (𝐴◡ E 𝐵 ↔ 𝐵 E 𝐴) |
3 | epelg 5478 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 E 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | syl5bb 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2112 class class class wbr 5069 E cep 5476 ◡ccnv 5567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pr 5338 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-sn 4558 df-pr 4560 df-op 4564 df-br 5070 df-opab 5132 df-eprel 5477 df-xp 5574 df-rel 5575 df-cnv 5576 |
This theorem is referenced by: brcnvepres 36179 eccnvepres 36188 eleccnvep 36189 cnvepres 36206 rnxrncnvepres 36299 dfcoels 36326 br1cossincnvepres 36341 br1cossxrncnvepres 36343 dfeldisj5 36605 |
Copyright terms: Public domain | W3C validator |