Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvep Structured version   Visualization version   GIF version

Theorem brcnvep 37128
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.)
Assertion
Ref Expression
brcnvep (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))

Proof of Theorem brcnvep
StepHypRef Expression
1 rele 5827 . . 3 Rel E
21relbrcnv 6106 . 2 (𝐴 E 𝐵𝐵 E 𝐴)
3 epelg 5581 . 2 (𝐴𝑉 → (𝐵 E 𝐴𝐵𝐴))
42, 3bitrid 282 1 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106   class class class wbr 5148   E cep 5579  ccnv 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684
This theorem is referenced by:  brcnvepres  37130  eccnvepres  37143  eleccnvep  37144  cnvepres  37162  rnxrncnvepres  37265  coss2cnvepres  37283  dfcoels  37295  br1cossincnvepres  37315  br1cossxrncnvepres  37317  dfeldisj5  37586
  Copyright terms: Public domain W3C validator