Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvep Structured version   Visualization version   GIF version

Theorem brcnvep 38221
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.)
Assertion
Ref Expression
brcnvep (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))

Proof of Theorem brcnvep
StepHypRef Expression
1 rele 5851 . . 3 Rel E
21relbrcnv 6137 . 2 (𝐴 E 𝐵𝐵 E 𝐴)
3 epelg 5600 . 2 (𝐴𝑉 → (𝐵 E 𝐴𝐵𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108   class class class wbr 5166   E cep 5598  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  brcnvepres  38223  eccnvepres  38236  eleccnvep  38237  cnvepres  38254  rnxrncnvepres  38356  coss2cnvepres  38374  dfcoels  38386  br1cossincnvepres  38406  br1cossxrncnvepres  38408  dfeldisj5  38677
  Copyright terms: Public domain W3C validator