| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvep | Structured version Visualization version GIF version | ||
| Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| brcnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rele 5790 | . . 3 ⊢ Rel E | |
| 2 | 1 | relbrcnv 6078 | . 2 ⊢ (𝐴◡ E 𝐵 ↔ 𝐵 E 𝐴) |
| 3 | epelg 5539 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 E 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 E cep 5537 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: brcnvepres 38256 eccnvepres 38268 eleccnvep 38269 cnvepres 38286 brxrncnvep 38359 dmcnvep 38361 rnxrncnvepres 38386 coss2cnvepres 38409 dfcoels 38421 br1cossincnvepres 38441 br1cossxrncnvepres 38443 dfeldisj5 38713 |
| Copyright terms: Public domain | W3C validator |