Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvep Structured version   Visualization version   GIF version

Theorem brcnvep 38244
Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.)
Assertion
Ref Expression
brcnvep (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))

Proof of Theorem brcnvep
StepHypRef Expression
1 rele 5770 . . 3 Rel E
21relbrcnv 6058 . 2 (𝐴 E 𝐵𝐵 E 𝐴)
3 epelg 5520 . 2 (𝐴𝑉 → (𝐵 E 𝐴𝐵𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5092   E cep 5518  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627
This theorem is referenced by:  brcnvepres  38246  eccnvepres  38258  eleccnvep  38259  cnvepres  38276  brxrncnvep  38349  dmcnvep  38351  rnxrncnvepres  38376  coss2cnvepres  38399  dfcoels  38411  br1cossincnvepres  38431  br1cossxrncnvepres  38433  dfeldisj5  38703
  Copyright terms: Public domain W3C validator