| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-epelb | Structured version Visualization version GIF version | ||
| Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5678 available. Check if it is shorter to prove bj-epelg 37123 first or bj-epelb 37124 first. (Contributed by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-epelb | ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rele 5774 | . . . 4 ⊢ Rel E | |
| 2 | 1 | brrelex2i 5678 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐵 ∈ V) |
| 3 | 2 | pm4.71i 559 | . 2 ⊢ (𝐴 E 𝐵 ↔ (𝐴 E 𝐵 ∧ 𝐵 ∈ V)) |
| 4 | epelg 5522 | . . 3 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | pm5.32ri 575 | . 2 ⊢ ((𝐴 E 𝐵 ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3438 class class class wbr 5095 E cep 5520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |