Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelb Structured version   Visualization version   GIF version

Theorem bj-epelb 37035
Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5757 available. Check if it is shorter to prove bj-epelg 37034 first or bj-epelb 37035 first. (Contributed by BJ, 14-Jul-2023.)
Assertion
Ref Expression
bj-epelb (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))

Proof of Theorem bj-epelb
StepHypRef Expression
1 rele 5851 . . . 4 Rel E
21brrelex2i 5757 . . 3 (𝐴 E 𝐵𝐵 ∈ V)
32pm4.71i 559 . 2 (𝐴 E 𝐵 ↔ (𝐴 E 𝐵𝐵 ∈ V))
4 epelg 5600 . . 3 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
54pm5.32ri 575 . 2 ((𝐴 E 𝐵𝐵 ∈ V) ↔ (𝐴𝐵𝐵 ∈ V))
63, 5bitri 275 1 (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166   E cep 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator