![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-epelb | Structured version Visualization version GIF version |
Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5757 available. Check if it is shorter to prove bj-epelg 37034 first or bj-epelb 37035 first. (Contributed by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
bj-epelb | ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rele 5851 | . . . 4 ⊢ Rel E | |
2 | 1 | brrelex2i 5757 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐵 ∈ V) |
3 | 2 | pm4.71i 559 | . 2 ⊢ (𝐴 E 𝐵 ↔ (𝐴 E 𝐵 ∧ 𝐵 ∈ V)) |
4 | epelg 5600 | . . 3 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | 4 | pm5.32ri 575 | . 2 ⊢ ((𝐴 E 𝐵 ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
6 | 3, 5 | bitri 275 | 1 ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 E cep 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |