Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelb Structured version   Visualization version   GIF version

Theorem bj-epelb 37052
Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5746 available. Check if it is shorter to prove bj-epelg 37051 first or bj-epelb 37052 first. (Contributed by BJ, 14-Jul-2023.)
Assertion
Ref Expression
bj-epelb (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))

Proof of Theorem bj-epelb
StepHypRef Expression
1 rele 5840 . . . 4 Rel E
21brrelex2i 5746 . . 3 (𝐴 E 𝐵𝐵 ∈ V)
32pm4.71i 559 . 2 (𝐴 E 𝐵 ↔ (𝐴 E 𝐵𝐵 ∈ V))
4 epelg 5590 . . 3 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
54pm5.32ri 575 . 2 ((𝐴 E 𝐵𝐵 ∈ V) ↔ (𝐴𝐵𝐵 ∈ V))
63, 5bitri 275 1 (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  Vcvv 3478   class class class wbr 5148   E cep 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator