Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelb Structured version   Visualization version   GIF version

Theorem bj-epelb 37050
Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5688 available. Check if it is shorter to prove bj-epelg 37049 first or bj-epelb 37050 first. (Contributed by BJ, 14-Jul-2023.)
Assertion
Ref Expression
bj-epelb (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))

Proof of Theorem bj-epelb
StepHypRef Expression
1 rele 5781 . . . 4 Rel E
21brrelex2i 5688 . . 3 (𝐴 E 𝐵𝐵 ∈ V)
32pm4.71i 559 . 2 (𝐴 E 𝐵 ↔ (𝐴 E 𝐵𝐵 ∈ V))
4 epelg 5532 . . 3 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
54pm5.32ri 575 . 2 ((𝐴 E 𝐵𝐵 ∈ V) ↔ (𝐴𝐵𝐵 ∈ V))
63, 5bitri 275 1 (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3444   class class class wbr 5102   E cep 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-eprel 5531  df-xp 5637  df-rel 5638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator