Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelb Structured version   Visualization version   GIF version

Theorem bj-epelb 37124
Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5678 available. Check if it is shorter to prove bj-epelg 37123 first or bj-epelb 37124 first. (Contributed by BJ, 14-Jul-2023.)
Assertion
Ref Expression
bj-epelb (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))

Proof of Theorem bj-epelb
StepHypRef Expression
1 rele 5774 . . . 4 Rel E
21brrelex2i 5678 . . 3 (𝐴 E 𝐵𝐵 ∈ V)
32pm4.71i 559 . 2 (𝐴 E 𝐵 ↔ (𝐴 E 𝐵𝐵 ∈ V))
4 epelg 5522 . . 3 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
54pm5.32ri 575 . 2 ((𝐴 E 𝐵𝐵 ∈ V) ↔ (𝐴𝐵𝐵 ∈ V))
63, 5bitri 275 1 (𝐴 E 𝐵 ↔ (𝐴𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  Vcvv 3438   class class class wbr 5095   E cep 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-eprel 5521  df-xp 5627  df-rel 5628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator