| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-epelb | Structured version Visualization version GIF version | ||
| Description: Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5695 available. Check if it is shorter to prove bj-epelg 37056 first or bj-epelb 37057 first. (Contributed by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-epelb | ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rele 5790 | . . . 4 ⊢ Rel E | |
| 2 | 1 | brrelex2i 5695 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐵 ∈ V) |
| 3 | 2 | pm4.71i 559 | . 2 ⊢ (𝐴 E 𝐵 ↔ (𝐴 E 𝐵 ∧ 𝐵 ∈ V)) |
| 4 | epelg 5539 | . . 3 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | pm5.32ri 575 | . 2 ⊢ ((𝐴 E 𝐵 ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 E cep 5537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |