Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibglbN Structured version   Visualization version   GIF version

Theorem dibglbN 41149
Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibglb.g 𝐺 = (glb‘𝐾)
dibglb.h 𝐻 = (LHyp‘𝐾)
dibglb.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem dibglbN
Dummy variables 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprl 771 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ dom 𝐼)
3 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
5 dibglb.h . . . . . 6 𝐻 = (LHyp‘𝐾)
6 dibglb.i . . . . . 6 𝐼 = ((DIsoB‘𝐾)‘𝑊)
73, 4, 5, 6dibdmN 41140 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
87sseq2d 4028 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
98adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
102, 9mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
11 simprr 773 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
125, 6dibvalrel 41146 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
1312adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘(𝐺𝑆)))
14 n0 4359 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1514biimpi 216 . . . . . . 7 (𝑆 ≠ ∅ → ∃𝑥 𝑥𝑆)
1615ad2antll 729 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
175, 6dibvalrel 41146 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
1817adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼𝑥))
1918a1d 25 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → Rel (𝐼𝑥)))
2019ancld 550 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
2120eximdv 1915 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
2216, 21mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
23 df-rex 3069 . . . . 5 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
2422, 23sylibr 234 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥𝑆 Rel (𝐼𝑥))
25 reliin 5830 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
2624, 25syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel 𝑥𝑆 (𝐼𝑥))
27 id 22 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)))
28 simpl 482 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simprl 771 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
30 eqid 2735 . . . . . . . . . . . . 13 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
313, 4, 5, 30diadm 41018 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3231adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3329, 32sseqtrrd 4037 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊))
34 simprr 773 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
35 dibglb.g . . . . . . . . . . 11 𝐺 = (glb‘𝐾)
3635, 5, 30diaglbN 41038 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊) ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3728, 33, 34, 36syl12anc 837 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3837eleq2d 2825 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
39 vex 3482 . . . . . . . . 9 𝑓 ∈ V
40 eliin 5001 . . . . . . . . 9 (𝑓 ∈ V → (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4139, 40ax-mp 5 . . . . . . . 8 (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))
4238, 41bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4342anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
44 r19.27zv 4512 . . . . . . 7 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4544ad2antll 729 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4643, 45bitr4d 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
47 hlclat 39340 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4847ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
49 ssrab2 4090 . . . . . . . 8 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
5029, 49sstrdi 4008 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
513, 35clatglbcl 18563 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
5248, 50, 51syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
53 hllat 39345 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5453ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
5547ad3antrrr 730 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
56 simplrl 777 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
5756, 49sstrdi 4008 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
5855, 57, 51syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
5950sselda 3995 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
603, 5lhpbase 39981 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
6160ad3antlr 731 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
62 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
633, 4, 35clatglble 18575 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6455, 57, 62, 63syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6529sselda 3995 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
66 breq1 5151 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
6766elrab 3695 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6865, 67sylib 218 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6968simprd 495 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
703, 4, 54, 58, 59, 61, 64, 69lattrd 18504 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
7116, 70exlimddv 1933 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
72 eqid 2735 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
73 eqid 2735 . . . . . . 7 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
743, 4, 5, 72, 73, 30, 6dibopelval2 41128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
7528, 52, 71, 74syl12anc 837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
76 opex 5475 . . . . . . 7 𝑓, 𝑠⟩ ∈ V
77 eliin 5001 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
7876, 77ax-mp 5 . . . . . 6 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
79 simpll 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
803, 4, 5, 72, 73, 30, 6dibopelval2 41128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8179, 68, 80syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8281ralbidva 3174 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8378, 82bitrid 283 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8446, 75, 833bitr4d 311 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
8584eqrelrdv2 5808 . . 3 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
8613, 26, 27, 85syl21anc 838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
871, 10, 11, 86syl12anc 837 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  c0 4339  cop 4637   ciin 4997   class class class wbr 5148  cmpt 5231   I cid 5582  dom cdm 5689  cres 5691  Rel wrel 5694  cfv 6563  Basecbs 17245  lecple 17305  glbcglb 18368  Latclat 18489  CLatccla 18556  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  DIsoAcdia 41011  DIsoBcdib 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-disoa 41012  df-dib 41122
This theorem is referenced by:  dibintclN  41150  dihglblem3N  41278  dihmeetlem2N  41282
  Copyright terms: Public domain W3C validator