Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibglbN Structured version   Visualization version   GIF version

Theorem dibglbN 41167
Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibglb.g 𝐺 = (glb‘𝐾)
dibglb.h 𝐻 = (LHyp‘𝐾)
dibglb.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem dibglbN
Dummy variables 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ dom 𝐼)
3 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2730 . . . . . 6 (le‘𝐾) = (le‘𝐾)
5 dibglb.h . . . . . 6 𝐻 = (LHyp‘𝐾)
6 dibglb.i . . . . . 6 𝐼 = ((DIsoB‘𝐾)‘𝑊)
73, 4, 5, 6dibdmN 41158 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
87sseq2d 3982 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
98adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
102, 9mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
11 simprr 772 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
125, 6dibvalrel 41164 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
1312adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘(𝐺𝑆)))
14 n0 4319 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1514biimpi 216 . . . . . . 7 (𝑆 ≠ ∅ → ∃𝑥 𝑥𝑆)
1615ad2antll 729 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
175, 6dibvalrel 41164 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
1817adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼𝑥))
1918a1d 25 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → Rel (𝐼𝑥)))
2019ancld 550 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
2120eximdv 1917 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
2216, 21mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
23 df-rex 3055 . . . . 5 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
2422, 23sylibr 234 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥𝑆 Rel (𝐼𝑥))
25 reliin 5783 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
2624, 25syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel 𝑥𝑆 (𝐼𝑥))
27 id 22 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)))
28 simpl 482 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simprl 770 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
30 eqid 2730 . . . . . . . . . . . . 13 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
313, 4, 5, 30diadm 41036 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3231adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3329, 32sseqtrrd 3987 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊))
34 simprr 772 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
35 dibglb.g . . . . . . . . . . 11 𝐺 = (glb‘𝐾)
3635, 5, 30diaglbN 41056 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊) ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3728, 33, 34, 36syl12anc 836 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3837eleq2d 2815 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
39 vex 3454 . . . . . . . . 9 𝑓 ∈ V
40 eliin 4963 . . . . . . . . 9 (𝑓 ∈ V → (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4139, 40ax-mp 5 . . . . . . . 8 (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))
4238, 41bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4342anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
44 r19.27zv 4472 . . . . . . 7 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4544ad2antll 729 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4643, 45bitr4d 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
47 hlclat 39358 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4847ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
49 ssrab2 4046 . . . . . . . 8 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
5029, 49sstrdi 3962 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
513, 35clatglbcl 18471 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
5248, 50, 51syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
53 hllat 39363 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5453ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
5547ad3antrrr 730 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
56 simplrl 776 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
5756, 49sstrdi 3962 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
5855, 57, 51syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
5950sselda 3949 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
603, 5lhpbase 39999 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
6160ad3antlr 731 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
62 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
633, 4, 35clatglble 18483 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6455, 57, 62, 63syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6529sselda 3949 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
66 breq1 5113 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
6766elrab 3662 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6865, 67sylib 218 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6968simprd 495 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
703, 4, 54, 58, 59, 61, 64, 69lattrd 18412 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
7116, 70exlimddv 1935 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
72 eqid 2730 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
73 eqid 2730 . . . . . . 7 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
743, 4, 5, 72, 73, 30, 6dibopelval2 41146 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
7528, 52, 71, 74syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
76 opex 5427 . . . . . . 7 𝑓, 𝑠⟩ ∈ V
77 eliin 4963 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
7876, 77ax-mp 5 . . . . . 6 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
79 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
803, 4, 5, 72, 73, 30, 6dibopelval2 41146 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8179, 68, 80syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8281ralbidva 3155 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8378, 82bitrid 283 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8446, 75, 833bitr4d 311 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
8584eqrelrdv2 5761 . . 3 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
8613, 26, 27, 85syl21anc 837 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
871, 10, 11, 86syl12anc 836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  cop 4598   ciin 4959   class class class wbr 5110  cmpt 5191   I cid 5535  dom cdm 5641  cres 5643  Rel wrel 5646  cfv 6514  Basecbs 17186  lecple 17234  glbcglb 18278  Latclat 18397  CLatccla 18464  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  DIsoAcdia 41029  DIsoBcdib 41139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-disoa 41030  df-dib 41140
This theorem is referenced by:  dibintclN  41168  dihglblem3N  41296  dihmeetlem2N  41300
  Copyright terms: Public domain W3C validator