| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simprl 771 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom 𝐼) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 4 | | eqid 2737 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
| 5 | | dibglb.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | | dibglb.i |
. . . . . 6
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| 7 | 3, 4, 5, 6 | dibdmN 41159 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 8 | 7 | sseq2d 4016 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
| 9 | 8 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
| 10 | 2, 9 | mpbid 232 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 11 | | simprr 773 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
| 12 | 5, 6 | dibvalrel 41165 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘(𝐺‘𝑆))) |
| 13 | 12 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘(𝐺‘𝑆))) |
| 14 | | n0 4353 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
| 15 | 14 | biimpi 216 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ →
∃𝑥 𝑥 ∈ 𝑆) |
| 16 | 15 | ad2antll 729 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑆) |
| 17 | 5, 6 | dibvalrel 41165 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑥)) |
| 18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘𝑥)) |
| 19 | 18 | a1d 25 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ 𝑆 → Rel (𝐼‘𝑥))) |
| 20 | 19 | ancld 550 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ 𝑆 → (𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥)))) |
| 21 | 20 | eximdv 1917 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∃𝑥 𝑥 ∈ 𝑆 → ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥)))) |
| 22 | 16, 21 | mpd 15 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥))) |
| 23 | | df-rex 3071 |
. . . . 5
⊢
(∃𝑥 ∈
𝑆 Rel (𝐼‘𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥))) |
| 24 | 22, 23 | sylibr 234 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 ∈ 𝑆 Rel (𝐼‘𝑥)) |
| 25 | | reliin 5827 |
. . . 4
⊢
(∃𝑥 ∈
𝑆 Rel (𝐼‘𝑥) → Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
| 26 | 24, 25 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
| 27 | | id 22 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) |
| 28 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 29 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 30 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) |
| 31 | 3, 4, 5, 30 | diadm 41037 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → dom
((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 33 | 29, 32 | sseqtrrd 4021 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊)) |
| 34 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
| 35 | | dibglb.g |
. . . . . . . . . . 11
⊢ 𝐺 = (glb‘𝐾) |
| 36 | 35, 5, 30 | diaglbN 41057 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊) ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
| 37 | 28, 33, 34, 36 | syl12anc 837 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
| 38 | 37 | eleq2d 2827 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
| 39 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
| 40 | | eliin 4996 |
. . . . . . . . 9
⊢ (𝑓 ∈ V → (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
| 42 | 38, 41 | bitrdi 287 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
| 43 | 42 | anbi1d 631 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 44 | | r19.27zv 4506 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 45 | 44 | ad2antll 729 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 46 | 43, 45 | bitr4d 282 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 47 | | hlclat 39359 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| 48 | 47 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
| 49 | | ssrab2 4080 |
. . . . . . . 8
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾) |
| 50 | 29, 49 | sstrdi 3996 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾)) |
| 51 | 3, 35 | clatglbcl 18550 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 52 | 48, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 53 | | hllat 39364 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 54 | 53 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ Lat) |
| 55 | 47 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ CLat) |
| 56 | | simplrl 777 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 57 | 56, 49 | sstrdi 3996 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐾)) |
| 58 | 55, 57, 51 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 59 | 50 | sselda 3983 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐾)) |
| 60 | 3, 5 | lhpbase 40000 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 61 | 60 | ad3antlr 731 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ (Base‘𝐾)) |
| 62 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 63 | 3, 4, 35 | clatglble 18562 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
| 64 | 55, 57, 62, 63 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
| 65 | 29 | sselda 3983 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 66 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) |
| 67 | 66 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
| 68 | 65, 67 | sylib 218 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
| 69 | 68 | simprd 495 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥(le‘𝐾)𝑊) |
| 70 | 3, 4, 54, 58, 59, 61, 64, 69 | lattrd 18491 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
| 71 | 16, 70 | exlimddv 1935 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
| 72 | | eqid 2737 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 73 | | eqid 2737 |
. . . . . . 7
⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) |
| 74 | 3, 4, 5, 72, 73, 30, 6 | dibopelval2 41147 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (𝐺‘𝑆)(le‘𝐾)𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 75 | 28, 52, 71, 74 | syl12anc 837 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 76 | | opex 5469 |
. . . . . . 7
⊢
〈𝑓, 𝑠〉 ∈ V |
| 77 | | eliin 4996 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 ∈ V →
(〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥))) |
| 78 | 76, 77 | ax-mp 5 |
. . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥)) |
| 79 | | simpll 767 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 80 | 3, 4, 5, 72, 73, 30, 6 | dibopelval2 41147 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 81 | 79, 68, 80 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 82 | 81 | ralbidva 3176 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 83 | 78, 82 | bitrid 283 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
| 84 | 46, 75, 83 | 3bitr4d 311 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ 〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
| 85 | 84 | eqrelrdv2 5805 |
. . 3
⊢ (((Rel
(𝐼‘(𝐺‘𝑆)) ∧ Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
| 86 | 13, 26, 27, 85 | syl21anc 838 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
| 87 | 1, 10, 11, 86 | syl12anc 837 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |