Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simprl 767 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom 𝐼) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | eqid 2738 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
5 | | dibglb.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | dibglb.i |
. . . . . 6
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
7 | 3, 4, 5, 6 | dibdmN 39098 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
8 | 7 | sseq2d 3949 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
9 | 8 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
10 | 2, 9 | mpbid 231 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
11 | | simprr 769 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
12 | 5, 6 | dibvalrel 39104 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘(𝐺‘𝑆))) |
13 | 12 | adantr 480 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘(𝐺‘𝑆))) |
14 | | n0 4277 |
. . . . . . . 8
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
15 | 14 | biimpi 215 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ →
∃𝑥 𝑥 ∈ 𝑆) |
16 | 15 | ad2antll 725 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑆) |
17 | 5, 6 | dibvalrel 39104 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑥)) |
18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘𝑥)) |
19 | 18 | a1d 25 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ 𝑆 → Rel (𝐼‘𝑥))) |
20 | 19 | ancld 550 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ 𝑆 → (𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥)))) |
21 | 20 | eximdv 1921 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∃𝑥 𝑥 ∈ 𝑆 → ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥)))) |
22 | 16, 21 | mpd 15 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥))) |
23 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑥 ∈
𝑆 Rel (𝐼‘𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ Rel (𝐼‘𝑥))) |
24 | 22, 23 | sylibr 233 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 ∈ 𝑆 Rel (𝐼‘𝑥)) |
25 | | reliin 5716 |
. . . 4
⊢
(∃𝑥 ∈
𝑆 Rel (𝐼‘𝑥) → Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
26 | 24, 25 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
27 | | id 22 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) |
28 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
30 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) |
31 | 3, 4, 5, 30 | diadm 38976 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → dom
((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
33 | 29, 32 | sseqtrrd 3958 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊)) |
34 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
35 | | dibglb.g |
. . . . . . . . . . 11
⊢ 𝐺 = (glb‘𝐾) |
36 | 35, 5, 30 | diaglbN 38996 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊) ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
37 | 28, 33, 34, 36 | syl12anc 833 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
38 | 37 | eleq2d 2824 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
39 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
40 | | eliin 4926 |
. . . . . . . . 9
⊢ (𝑓 ∈ V → (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
41 | 39, 40 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)) |
42 | 38, 41 | bitrdi 286 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))) |
43 | 42 | anbi1d 629 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
44 | | r19.27zv 4433 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
45 | 44 | ad2antll 725 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥 ∈ 𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
46 | 43, 45 | bitr4d 281 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
47 | | hlclat 37299 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
48 | 47 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
49 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾) |
50 | 29, 49 | sstrdi 3929 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾)) |
51 | 3, 35 | clatglbcl 18138 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
52 | 48, 50, 51 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
53 | | hllat 37304 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
54 | 53 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ Lat) |
55 | 47 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ CLat) |
56 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
57 | 56, 49 | sstrdi 3929 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐾)) |
58 | 55, 57, 51 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
59 | 50 | sselda 3917 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐾)) |
60 | 3, 5 | lhpbase 37939 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
61 | 60 | ad3antlr 727 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ (Base‘𝐾)) |
62 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
63 | 3, 4, 35 | clatglble 18150 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
64 | 55, 57, 62, 63 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
65 | 29 | sselda 3917 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
66 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) |
67 | 66 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
68 | 65, 67 | sylib 217 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
69 | 68 | simprd 495 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥(le‘𝐾)𝑊) |
70 | 3, 4, 54, 58, 59, 61, 64, 69 | lattrd 18079 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
71 | 16, 70 | exlimddv 1939 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
72 | | eqid 2738 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
73 | | eqid 2738 |
. . . . . . 7
⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) |
74 | 3, 4, 5, 72, 73, 30, 6 | dibopelval2 39086 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (𝐺‘𝑆)(le‘𝐾)𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
75 | 28, 52, 71, 74 | syl12anc 833 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺‘𝑆)) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
76 | | opex 5373 |
. . . . . . 7
⊢
〈𝑓, 𝑠〉 ∈ V |
77 | | eliin 4926 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 ∈ V →
(〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥))) |
78 | 76, 77 | ax-mp 5 |
. . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥)) |
79 | | simpll 763 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
80 | 3, 4, 5, 72, 73, 30, 6 | dibopelval2 39086 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
81 | 79, 68, 80 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
82 | 81 | ralbidva 3119 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
83 | 78, 82 | syl5bb 282 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
84 | 46, 75, 83 | 3bitr4d 310 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝐺‘𝑆)) ↔ 〈𝑓, 𝑠〉 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
85 | 84 | eqrelrdv2 5694 |
. . 3
⊢ (((Rel
(𝐼‘(𝐺‘𝑆)) ∧ Rel ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
86 | 13, 26, 27, 85 | syl21anc 834 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
87 | 1, 10, 11, 86 | syl12anc 833 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |