Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibglbN Structured version   Visualization version   GIF version

Theorem dibglbN 38294
Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibglb.g 𝐺 = (glb‘𝐾)
dibglb.h 𝐻 = (LHyp‘𝐾)
dibglb.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem dibglbN
Dummy variables 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprl 769 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ dom 𝐼)
3 eqid 2819 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2819 . . . . . 6 (le‘𝐾) = (le‘𝐾)
5 dibglb.h . . . . . 6 𝐻 = (LHyp‘𝐾)
6 dibglb.i . . . . . 6 𝐼 = ((DIsoB‘𝐾)‘𝑊)
73, 4, 5, 6dibdmN 38285 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
87sseq2d 3997 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
98adantr 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
102, 9mpbid 234 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
11 simprr 771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
125, 6dibvalrel 38291 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
1312adantr 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼‘(𝐺𝑆)))
14 n0 4308 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1514biimpi 218 . . . . . . 7 (𝑆 ≠ ∅ → ∃𝑥 𝑥𝑆)
1615ad2antll 727 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
175, 6dibvalrel 38291 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
1817adantr 483 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel (𝐼𝑥))
1918a1d 25 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → Rel (𝐼𝑥)))
2019ancld 553 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
2120eximdv 1912 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
2216, 21mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
23 df-rex 3142 . . . . 5 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
2422, 23sylibr 236 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ∃𝑥𝑆 Rel (𝐼𝑥))
25 reliin 5683 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
2624, 25syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → Rel 𝑥𝑆 (𝐼𝑥))
27 id 22 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)))
28 simpl 485 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simprl 769 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
30 eqid 2819 . . . . . . . . . . . . 13 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
313, 4, 5, 30diadm 38163 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3231adantr 483 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
3329, 32sseqtrrd 4006 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊))
34 simprr 771 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
35 dibglb.g . . . . . . . . . . 11 𝐺 = (glb‘𝐾)
3635, 5, 30diaglbN 38183 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom ((DIsoA‘𝐾)‘𝑊) ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3728, 33, 34, 36syl12anc 834 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) = 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥))
3837eleq2d 2896 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
39 vex 3496 . . . . . . . . 9 𝑓 ∈ V
40 eliin 4915 . . . . . . . . 9 (𝑓 ∈ V → (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4139, 40ax-mp 5 . . . . . . . 8 (𝑓 𝑥𝑆 (((DIsoA‘𝐾)‘𝑊)‘𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥))
4238, 41syl6bb 289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥)))
4342anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
44 r19.27zv 4449 . . . . . . 7 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4544ad2antll 727 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ (∀𝑥𝑆 𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4643, 45bitr4d 284 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
47 hlclat 36486 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4847ad2antrr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
49 ssrab2 4054 . . . . . . . 8 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
5029, 49sstrdi 3977 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
513, 35clatglbcl 17716 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
5248, 50, 51syl2anc 586 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
53 hllat 36491 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5453ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
5547ad3antrrr 728 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
56 simplrl 775 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
5756, 49sstrdi 3977 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
5855, 57, 51syl2anc 586 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
5950sselda 3965 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
603, 5lhpbase 37126 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
6160ad3antlr 729 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
62 simpr 487 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
633, 4, 35clatglble 17727 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6455, 57, 62, 63syl3anc 1366 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
6529sselda 3965 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
66 breq1 5060 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
6766elrab 3678 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6865, 67sylib 220 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
6968simprd 498 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
703, 4, 54, 58, 59, 61, 64, 69lattrd 17660 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
7116, 70exlimddv 1930 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
72 eqid 2819 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
73 eqid 2819 . . . . . . 7 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
743, 4, 5, 72, 73, 30, 6dibopelval2 38273 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
7528, 52, 71, 74syl12anc 834 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝐺𝑆)) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
76 opex 5347 . . . . . . 7 𝑓, 𝑠⟩ ∈ V
77 eliin 4915 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
7876, 77ax-mp 5 . . . . . 6 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
79 simpll 765 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
803, 4, 5, 72, 73, 30, 6dibopelval2 38273 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8179, 68, 80syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8281ralbidva 3194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8378, 82syl5bb 285 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑥) ∧ 𝑠 = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
8446, 75, 833bitr4d 313 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
8584eqrelrdv2 5661 . . 3 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅))) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
8613, 26, 27, 85syl21anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
871, 10, 11, 86syl12anc 834 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  wne 3014  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  wss 3934  c0 4289  cop 4565   ciin 4911   class class class wbr 5057  cmpt 5137   I cid 5452  dom cdm 5548  cres 5550  Rel wrel 5553  cfv 6348  Basecbs 16475  lecple 16564  glbcglb 17545  Latclat 17647  CLatccla 17709  HLchlt 36478  LHypclh 37112  LTrncltrn 37229  DIsoAcdia 38156  DIsoBcdib 38266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-lhyp 37116  df-laut 37117  df-ldil 37232  df-ltrn 37233  df-trl 37287  df-disoa 38157  df-dib 38267
This theorem is referenced by:  dibintclN  38295  dihglblem3N  38423  dihmeetlem2N  38427
  Copyright terms: Public domain W3C validator