MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Visualization version   GIF version

Theorem xpiindi 5789
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpiindi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5649 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 3048 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2z 4454 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 691 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 5771 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 17 . . 3 (𝐴 ≠ ∅ → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 5649 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 519 . 2 (𝐴 ≠ ∅ → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 r19.28zv 4460 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐶𝑧𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
109bicomd 223 . . . . 5 (𝐴 ≠ ∅ → ((𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵)))
11 eliin 4956 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1211elv 3449 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1312anbi2i 623 . . . . 5 ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
14 opelxp 5667 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑦𝐶𝑧𝐵))
1514ralbii 3075 . . . . 5 (∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵))
1610, 13, 153bitr4g 314 . . . 4 (𝐴 ≠ ∅ → ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
17 opelxp 5667 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑦𝐶𝑧 𝑥𝐴 𝐵))
18 opex 5419 . . . . 5 𝑦, 𝑧⟩ ∈ V
19 eliin 4956 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ V → (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2018, 19ax-mp 5 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵))
2116, 17, 203bitr4g 314 . . 3 (𝐴 ≠ ∅ → (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2221eqrelrdv2 5749 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ 𝐴 ≠ ∅) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
238, 22mpancom 688 1 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  c0 4292  cop 4591   ciin 4952   × cxp 5629  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-iin 4954  df-opab 5165  df-xp 5637  df-rel 5638
This theorem is referenced by:  xpriindi  5790
  Copyright terms: Public domain W3C validator