MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Visualization version   GIF version

Theorem xpiindi 5679
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpiindi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5546 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 3138 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2z 4413 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 690 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 5663 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 17 . . 3 (𝐴 ≠ ∅ → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 5546 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 523 . 2 (𝐴 ≠ ∅ → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 r19.28zv 4419 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐶𝑧𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
109bicomd 226 . . . . 5 (𝐴 ≠ ∅ → ((𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵)))
11 eliin 4897 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1211elv 3476 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1312anbi2i 625 . . . . 5 ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
14 opelxp 5564 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑦𝐶𝑧𝐵))
1514ralbii 3153 . . . . 5 (∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵))
1610, 13, 153bitr4g 317 . . . 4 (𝐴 ≠ ∅ → ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
17 opelxp 5564 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑦𝐶𝑧 𝑥𝐴 𝐵))
18 opex 5329 . . . . 5 𝑦, 𝑧⟩ ∈ V
19 eliin 4897 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ V → (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2018, 19ax-mp 5 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵))
2116, 17, 203bitr4g 317 . . 3 (𝐴 ≠ ∅ → (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2221eqrelrdv2 5641 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ 𝐴 ≠ ∅) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
238, 22mpancom 687 1 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3007  wral 3126  wrex 3127  Vcvv 3471  c0 4266  cop 4546   ciin 4893   × cxp 5526  Rel wrel 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-iin 4895  df-opab 5102  df-xp 5534  df-rel 5535
This theorem is referenced by:  xpriindi  5680
  Copyright terms: Public domain W3C validator