MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliun Structured version   Visualization version   GIF version

Theorem reliun 5682
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)

Proof of Theorem reliun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4912 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21releqi 5645 . 2 (Rel 𝑥𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
3 df-rel 5555 . 2 (Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V))
4 abss 4037 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
5 df-rel 5555 . . . . . 6 (Rel 𝐵𝐵 ⊆ (V × V))
6 dfss2 3952 . . . . . 6 (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
75, 6bitri 276 . . . . 5 (Rel 𝐵 ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
87ralbii 3162 . . . 4 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)))
9 ralcom4 3232 . . . 4 (∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)))
10 r19.23v 3276 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ (∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
1110albii 1811 . . . 4 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
128, 9, 113bitri 298 . . 3 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
134, 12bitr4i 279 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑥𝐴 Rel 𝐵)
142, 3, 133bitri 298 1 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1526  wcel 2105  {cab 2796  wral 3135  wrex 3136  Vcvv 3492  wss 3933   ciun 4910   × cxp 5546  Rel wrel 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-in 3940  df-ss 3949  df-iun 4912  df-rel 5555
This theorem is referenced by:  reluni  5684  eliunxp  5701  opeliunxp2  5702  dfco2  6091  coiun  6102  fvn0ssdmfun  6834  opeliunxp2f  7865  fsumcom2  15117  fprodcom2  15326  imasaddfnlem  16789  imasvscafn  16798  gsum2d2lem  19022  gsum2d2  19023  gsumcom2  19024  dprd2d2  19095  cnextrel  22599  reldv  24395  dfcnv2  30350  cvmliftlem1  32429  cnviun  39873  coiun1  39875  eliunxp2  44310
  Copyright terms: Public domain W3C validator