Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reliun | Structured version Visualization version GIF version |
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
reliun | ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4923 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | 1 | releqi 5678 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
3 | df-rel 5587 | . 2 ⊢ (Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V)) | |
4 | abss 3990 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
5 | df-rel 5587 | . . . . . 6 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
6 | dfss2 3903 | . . . . . 6 ⊢ (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
7 | 5, 6 | bitri 274 | . . . . 5 ⊢ (Rel 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
8 | 7 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
9 | ralcom4 3161 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
10 | r19.23v 3207 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
11 | 10 | albii 1823 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
12 | 8, 9, 11 | 3bitri 296 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
13 | 4, 12 | bitr4i 277 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
14 | 2, 3, 13 | 3bitri 296 | 1 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∪ ciun 4921 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 df-rel 5587 |
This theorem is referenced by: reluni 5717 eliunxp 5735 opeliunxp2 5736 dfco2 6138 coiun 6149 fvn0ssdmfun 6934 opeliunxp2f 7997 fsumcom2 15414 fprodcom2 15622 imasaddfnlem 17156 imasvscafn 17165 gsum2d2lem 19489 gsum2d2 19490 gsumcom2 19491 dprd2d2 19562 cnextrel 23122 reldv 24939 dfcnv2 30915 gsumpart 31217 cvmliftlem1 33147 cnviun 41147 coiun1 41149 eliunxp2 45557 |
Copyright terms: Public domain | W3C validator |