| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reliun | Structured version Visualization version GIF version | ||
| Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| reliun | ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4943 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | 1 | releqi 5721 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
| 3 | df-rel 5626 | . 2 ⊢ (Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V)) | |
| 4 | abss 4015 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 5 | df-rel 5626 | . . . . . 6 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 6 | df-ss 3920 | . . . . . 6 ⊢ (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (Rel 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 8 | 7 | ralbii 3075 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 9 | ralcom4 3255 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 10 | r19.23v 3156 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 11 | 10 | albii 1819 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 12 | 8, 9, 11 | 3bitri 297 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 13 | 4, 12 | bitr4i 278 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| 14 | 2, 3, 13 | 3bitri 297 | 1 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∪ ciun 4941 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-ss 3920 df-iun 4943 df-rel 5626 |
| This theorem is referenced by: reluni 5761 eliunxp 5780 opeliunxp2 5781 dfco2 6194 coiun 6205 fvn0ssdmfun 7008 opeliunxp2f 8143 fsumcom2 15681 fprodcom2 15891 imasaddfnlem 17432 imasvscafn 17441 gsum2d2lem 19852 gsum2d2 19853 gsumcom2 19854 dprd2d2 19925 cnextrel 23948 reldv 25769 dfcnv2 32620 gsumpart 33011 gsumwrd2dccat 33021 cvmliftlem1 35268 cnviun 43633 coiun1 43635 eliunxp2 48328 |
| Copyright terms: Public domain | W3C validator |