MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliun Structured version   Visualization version   GIF version

Theorem reliun 5653
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)

Proof of Theorem reliun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4883 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21releqi 5616 . 2 (Rel 𝑥𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
3 df-rel 5526 . 2 (Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V))
4 abss 3988 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
5 df-rel 5526 . . . . . 6 (Rel 𝐵𝐵 ⊆ (V × V))
6 dfss2 3901 . . . . . 6 (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
75, 6bitri 278 . . . . 5 (Rel 𝐵 ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
87ralbii 3133 . . . 4 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)))
9 ralcom4 3198 . . . 4 (∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)))
10 r19.23v 3238 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ (∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
1110albii 1821 . . . 4 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
128, 9, 113bitri 300 . . 3 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
134, 12bitr4i 281 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑥𝐴 Rel 𝐵)
142, 3, 133bitri 300 1 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  wss 3881   ciun 4881   × cxp 5517  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-in 3888  df-ss 3898  df-iun 4883  df-rel 5526
This theorem is referenced by:  reluni  5655  eliunxp  5672  opeliunxp2  5673  dfco2  6065  coiun  6076  fvn0ssdmfun  6819  opeliunxp2f  7859  fsumcom2  15121  fprodcom2  15330  imasaddfnlem  16793  imasvscafn  16802  gsum2d2lem  19086  gsum2d2  19087  gsumcom2  19088  dprd2d2  19159  cnextrel  22668  reldv  24473  dfcnv2  30439  gsumpart  30740  cvmliftlem1  32645  cnviun  40351  coiun1  40353  eliunxp2  44735
  Copyright terms: Public domain W3C validator