Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglbcpreN Structured version   Visualization version   GIF version

Theorem dihglbcpreN 39314
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglbc.b 𝐵 = (Base‘𝐾)
dihglbc.g 𝐺 = (glb‘𝐾)
dihglbc.h 𝐻 = (LHyp‘𝐾)
dihglbc.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglbc.l = (le‘𝐾)
dihglbcpre.j = (join‘𝐾)
dihglbcpre.m = (meet‘𝐾)
dihglbcpre.a 𝐴 = (Atoms‘𝐾)
dihglbcpre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglbcpre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglbcpre.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglbcpre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglbcpre.f 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
Assertion
Ref Expression
dihglbcpreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑞,   𝑔,𝑞,𝑥,   𝑥,   𝐴,𝑔,𝑞,𝑥   𝐵,𝑞,𝑥   𝑥,𝐸   𝑥,𝐹   𝐺,𝑞,𝑥   𝑔,𝐻,𝑞,𝑥   𝐼,𝑞   𝑔,𝐾,𝑞,𝑥   𝑃,𝑔   𝑥,𝑅   𝑆,𝑞,𝑥   𝑇,𝑔,𝑥   𝑔,𝑊,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑥,𝑞)   𝑅(𝑔,𝑞)   𝑆(𝑔)   𝑇(𝑞)   𝐸(𝑔,𝑞)   𝐹(𝑔,𝑞)   𝐺(𝑔)   𝐼(𝑥,𝑔)   (𝑔,𝑞)   (𝑔)

Proof of Theorem dihglbcpreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglbc.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dihglbc.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 39293 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
433ad2ant1 1132 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel (𝐼‘(𝐺𝑆)))
5 simp2r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆 ≠ ∅)
6 n0 4280 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
75, 6sylib 217 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥 𝑥𝑆)
8 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simpl1 1190 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 2dihvalrel 39293 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → Rel (𝐼𝑥))
128, 11jca 512 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ Rel (𝐼𝑥)))
1312ex 413 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
1413eximdv 1920 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
157, 14mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
16 df-rex 3070 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
1715, 16sylibr 233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥𝑆 Rel (𝐼𝑥))
18 reliin 5727 . . 3 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
1917, 18syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel 𝑥𝑆 (𝐼𝑥))
20 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊))
21 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp1l 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
23 hlclat 37372 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
25 simp2l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆𝐵)
26 dihglbc.b . . . . . . 7 𝐵 = (Base‘𝐾)
27 dihglbc.g . . . . . . 7 𝐺 = (glb‘𝐾)
2826, 27clatglbcl 18223 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2924, 25, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
30 simp3 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ¬ (𝐺𝑆) 𝑊)
31 dihglbc.l . . . . . 6 = (le‘𝐾)
32 dihglbcpre.j . . . . . 6 = (join‘𝐾)
33 dihglbcpre.m . . . . . 6 = (meet‘𝐾)
34 dihglbcpre.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3526, 31, 32, 33, 34, 1lhpmcvr2 38038 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
3621, 29, 30, 35syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
37 simpl1 1190 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3829adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐺𝑆) ∈ 𝐵)
39 simpl3 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ¬ (𝐺𝑆) 𝑊)
40 simpr 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
41 dihglbcpre.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
42 dihglbcpre.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
43 dihglbcpre.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
44 dihglbcpre.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
45 dihglbcpre.f . . . . . . . . . 10 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
46 vex 3436 . . . . . . . . . 10 𝑓 ∈ V
47 vex 3436 . . . . . . . . . 10 𝑠 ∈ V
4826, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 39263 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
4937, 38, 39, 40, 48syl121anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
50 simpl2r 1226 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → 𝑆 ≠ ∅)
51 r19.28zv 4431 . . . . . . . . . . 11 (𝑆 ≠ ∅ → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
5250, 51syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
53 simp11 1202 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12l 1285 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑆𝐵)
55 simp3 1137 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5654, 55sseldd 3922 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
57 simp13 1204 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ (𝐺𝑆) 𝑊)
58 simp11l 1283 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5958, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
6026, 31, 27clatglble 18235 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆) → (𝐺𝑆) 𝑥)
6159, 54, 55, 60syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) 𝑥)
6258hllatd 37378 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
63293ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ 𝐵)
64 simp11r 1284 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐻)
6526, 1lhpbase 38012 . . . . . . . . . . . . . . . . 17 (𝑊𝐻𝑊𝐵)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐵)
6726, 31lattr 18162 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝐺𝑆) ∈ 𝐵𝑥𝐵𝑊𝐵)) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6862, 63, 56, 66, 67syl13anc 1371 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6961, 68mpand 692 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑊 → (𝐺𝑆) 𝑊))
7057, 69mtod 197 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 𝑊)
71 simp2l 1198 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
72 simp2ll 1239 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐴)
7326, 34atbase 37303 . . . . . . . . . . . . . . . . 17 (𝑞𝐴𝑞𝐵)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐵)
7526, 33latmcl 18158 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝐺𝑆) ∈ 𝐵𝑊𝐵) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7662, 63, 66, 75syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7726, 31, 32latlej1 18166 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑞𝐵 ∧ ((𝐺𝑆) 𝑊) ∈ 𝐵) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
7862, 74, 76, 77syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
79 simp2r 1199 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))
8078, 79breqtrd 5100 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝐺𝑆))
8126, 31, 62, 74, 63, 56, 80, 61lattrd 18164 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 𝑥)
8226, 31, 32, 33, 34atmod3i1 37878 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑥𝐵𝑊𝐵) ∧ 𝑞 𝑥) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
8358, 72, 56, 66, 81, 82syl131anc 1382 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
84 eqid 2738 . . . . . . . . . . . . . . . . 17 (1.‘𝐾) = (1.‘𝐾)
8531, 32, 84, 34, 1lhpjat2 38035 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑞 𝑊) = (1.‘𝐾))
8653, 71, 85syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 𝑊) = (1.‘𝐾))
8786oveq2d 7291 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (𝑞 𝑊)) = (𝑥 (1.‘𝐾)))
88 hlol 37375 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OL)
8958, 88syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ OL)
9026, 33, 84olm11 37241 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OL ∧ 𝑥𝐵) → (𝑥 (1.‘𝐾)) = 𝑥)
9189, 56, 90syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (1.‘𝐾)) = 𝑥)
9283, 87, 913eqtrd 2782 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = 𝑥)
9326, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 39263 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵 ∧ ¬ 𝑥 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑥 𝑊)) = 𝑥)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9453, 56, 70, 71, 92, 93syl122anc 1378 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
95943expa 1117 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9695ralbidva 3111 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
97 simp11l 1283 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ HL)
9897, 23syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ CLat)
99 simp11 1202 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
100 simp3l 1200 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑓𝑇)
101 simp3r 1201 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑠𝐸)
10231, 34, 1, 41lhpocnel2 38033 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10399, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
104 simp2l 1198 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
10531, 34, 1, 42, 45ltrniotacl 38593 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐹𝑇)
10699, 103, 104, 105syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐹𝑇)
1071, 42, 44tendocl 38781 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
10899, 101, 106, 107syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1091, 42ltrncnv 38160 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐹) ∈ 𝑇) → (𝑠𝐹) ∈ 𝑇)
11099, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1111, 42ltrnco 38733 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇(𝑠𝐹) ∈ 𝑇) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11299, 100, 110, 111syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11326, 1, 42, 43trlcl 38178 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠𝐹)) ∈ 𝑇) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
11499, 112, 113syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
115 simp12l 1285 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑆𝐵)
11626, 31, 27clatleglb 18236 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵𝑆𝐵) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
11798, 114, 115, 116syl3anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
1181173expa 1117 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
119118pm5.32da 579 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
12052, 96, 1193bitr4rd 312 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
121 opex 5379 . . . . . . . . . 10 𝑓, 𝑠⟩ ∈ V
122 eliin 4929 . . . . . . . . . 10 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
123121, 122ax-mp 5 . . . . . . . . 9 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
124120, 123bitr4di 289 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
12549, 124bitrd 278 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
126125exp44 438 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))))
127126imp4a 423 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))))
128127rexlimdv 3212 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))
12936, 128mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
130129eqrelrdv2 5705 . 2 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
1314, 19, 20, 130syl21anc 835 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  cop 4567   ciin 4925   class class class wbr 5074  ccnv 5588  ccom 5593  Rel wrel 5594  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  occoc 16970  glbcglb 18028  joincjn 18029  meetcmee 18030  1.cp1 18142  Latclat 18149  CLatccla 18216  OLcol 37188  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766  DIsoHcdih 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769  df-edring 38771  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243
This theorem is referenced by:  dihglbcN  39315
  Copyright terms: Public domain W3C validator