Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglbcpreN Structured version   Visualization version   GIF version

Theorem dihglbcpreN 41261
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglbc.b 𝐵 = (Base‘𝐾)
dihglbc.g 𝐺 = (glb‘𝐾)
dihglbc.h 𝐻 = (LHyp‘𝐾)
dihglbc.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglbc.l = (le‘𝐾)
dihglbcpre.j = (join‘𝐾)
dihglbcpre.m = (meet‘𝐾)
dihglbcpre.a 𝐴 = (Atoms‘𝐾)
dihglbcpre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglbcpre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglbcpre.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglbcpre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglbcpre.f 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
Assertion
Ref Expression
dihglbcpreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑞,   𝑔,𝑞,𝑥,   𝑥,   𝐴,𝑔,𝑞,𝑥   𝐵,𝑞,𝑥   𝑥,𝐸   𝑥,𝐹   𝐺,𝑞,𝑥   𝑔,𝐻,𝑞,𝑥   𝐼,𝑞   𝑔,𝐾,𝑞,𝑥   𝑃,𝑔   𝑥,𝑅   𝑆,𝑞,𝑥   𝑇,𝑔,𝑥   𝑔,𝑊,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑥,𝑞)   𝑅(𝑔,𝑞)   𝑆(𝑔)   𝑇(𝑞)   𝐸(𝑔,𝑞)   𝐹(𝑔,𝑞)   𝐺(𝑔)   𝐼(𝑥,𝑔)   (𝑔,𝑞)   (𝑔)

Proof of Theorem dihglbcpreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglbc.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dihglbc.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 41240 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
433ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel (𝐼‘(𝐺𝑆)))
5 simp2r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆 ≠ ∅)
6 n0 4333 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
75, 6sylib 218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥 𝑥𝑆)
8 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 2dihvalrel 41240 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → Rel (𝐼𝑥))
128, 11jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ Rel (𝐼𝑥)))
1312ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
1413eximdv 1916 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
157, 14mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
16 df-rex 3060 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
1715, 16sylibr 234 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥𝑆 Rel (𝐼𝑥))
18 reliin 5807 . . 3 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
1917, 18syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel 𝑥𝑆 (𝐼𝑥))
20 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊))
21 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp1l 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
23 hlclat 39318 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
25 simp2l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆𝐵)
26 dihglbc.b . . . . . . 7 𝐵 = (Base‘𝐾)
27 dihglbc.g . . . . . . 7 𝐺 = (glb‘𝐾)
2826, 27clatglbcl 18519 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2924, 25, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
30 simp3 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ¬ (𝐺𝑆) 𝑊)
31 dihglbc.l . . . . . 6 = (le‘𝐾)
32 dihglbcpre.j . . . . . 6 = (join‘𝐾)
33 dihglbcpre.m . . . . . 6 = (meet‘𝐾)
34 dihglbcpre.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3526, 31, 32, 33, 34, 1lhpmcvr2 39985 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
3621, 29, 30, 35syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
37 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3829adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐺𝑆) ∈ 𝐵)
39 simpl3 1193 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ¬ (𝐺𝑆) 𝑊)
40 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
41 dihglbcpre.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
42 dihglbcpre.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
43 dihglbcpre.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
44 dihglbcpre.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
45 dihglbcpre.f . . . . . . . . . 10 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
46 vex 3467 . . . . . . . . . 10 𝑓 ∈ V
47 vex 3467 . . . . . . . . . 10 𝑠 ∈ V
4826, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 41210 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
4937, 38, 39, 40, 48syl121anc 1376 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
50 simpl2r 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → 𝑆 ≠ ∅)
51 r19.28zv 4481 . . . . . . . . . . 11 (𝑆 ≠ ∅ → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
5250, 51syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
53 simp11 1203 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12l 1286 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑆𝐵)
55 simp3 1138 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5654, 55sseldd 3964 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
57 simp13 1205 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ (𝐺𝑆) 𝑊)
58 simp11l 1284 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5958, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
6026, 31, 27clatglble 18531 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆) → (𝐺𝑆) 𝑥)
6159, 54, 55, 60syl3anc 1372 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) 𝑥)
6258hllatd 39324 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
63293ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ 𝐵)
64 simp11r 1285 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐻)
6526, 1lhpbase 39959 . . . . . . . . . . . . . . . . 17 (𝑊𝐻𝑊𝐵)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐵)
6726, 31lattr 18458 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝐺𝑆) ∈ 𝐵𝑥𝐵𝑊𝐵)) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6862, 63, 56, 66, 67syl13anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6961, 68mpand 695 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑊 → (𝐺𝑆) 𝑊))
7057, 69mtod 198 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 𝑊)
71 simp2l 1199 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
72 simp2ll 1240 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐴)
7326, 34atbase 39249 . . . . . . . . . . . . . . . . 17 (𝑞𝐴𝑞𝐵)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐵)
7526, 33latmcl 18454 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝐺𝑆) ∈ 𝐵𝑊𝐵) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7662, 63, 66, 75syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7726, 31, 32latlej1 18462 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑞𝐵 ∧ ((𝐺𝑆) 𝑊) ∈ 𝐵) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
7862, 74, 76, 77syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
79 simp2r 1200 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))
8078, 79breqtrd 5149 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝐺𝑆))
8126, 31, 62, 74, 63, 56, 80, 61lattrd 18460 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 𝑥)
8226, 31, 32, 33, 34atmod3i1 39825 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑥𝐵𝑊𝐵) ∧ 𝑞 𝑥) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
8358, 72, 56, 66, 81, 82syl131anc 1384 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
84 eqid 2734 . . . . . . . . . . . . . . . . 17 (1.‘𝐾) = (1.‘𝐾)
8531, 32, 84, 34, 1lhpjat2 39982 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑞 𝑊) = (1.‘𝐾))
8653, 71, 85syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 𝑊) = (1.‘𝐾))
8786oveq2d 7429 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (𝑞 𝑊)) = (𝑥 (1.‘𝐾)))
88 hlol 39321 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OL)
8958, 88syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ OL)
9026, 33, 84olm11 39187 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OL ∧ 𝑥𝐵) → (𝑥 (1.‘𝐾)) = 𝑥)
9189, 56, 90syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (1.‘𝐾)) = 𝑥)
9283, 87, 913eqtrd 2773 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = 𝑥)
9326, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 41210 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵 ∧ ¬ 𝑥 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑥 𝑊)) = 𝑥)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9453, 56, 70, 71, 92, 93syl122anc 1380 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
95943expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9695ralbidva 3163 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
97 simp11l 1284 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ HL)
9897, 23syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ CLat)
99 simp11 1203 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
100 simp3l 1201 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑓𝑇)
101 simp3r 1202 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑠𝐸)
10231, 34, 1, 41lhpocnel2 39980 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10399, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
104 simp2l 1199 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
10531, 34, 1, 42, 45ltrniotacl 40540 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐹𝑇)
10699, 103, 104, 105syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐹𝑇)
1071, 42, 44tendocl 40728 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
10899, 101, 106, 107syl3anc 1372 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1091, 42ltrncnv 40107 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐹) ∈ 𝑇) → (𝑠𝐹) ∈ 𝑇)
11099, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1111, 42ltrnco 40680 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇(𝑠𝐹) ∈ 𝑇) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11299, 100, 110, 111syl3anc 1372 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11326, 1, 42, 43trlcl 40125 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠𝐹)) ∈ 𝑇) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
11499, 112, 113syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
115 simp12l 1286 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑆𝐵)
11626, 31, 27clatleglb 18532 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵𝑆𝐵) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
11798, 114, 115, 116syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
1181173expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
119118pm5.32da 579 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
12052, 96, 1193bitr4rd 312 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
121 opex 5449 . . . . . . . . . 10 𝑓, 𝑠⟩ ∈ V
122 eliin 4976 . . . . . . . . . 10 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
123121, 122ax-mp 5 . . . . . . . . 9 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
124120, 123bitr4di 289 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
12549, 124bitrd 279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
126125exp44 437 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))))
127126imp4a 422 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))))
128127rexlimdv 3140 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))
12936, 128mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
130129eqrelrdv2 5785 . 2 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
1314, 19, 20, 130syl21anc 837 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  wss 3931  c0 4313  cop 4612   ciin 4972   class class class wbr 5123  ccnv 5664  ccom 5669  Rel wrel 5670  cfv 6541  crio 7369  (class class class)co 7413  Basecbs 17229  lecple 17280  occoc 17281  glbcglb 18326  joincjn 18327  meetcmee 18328  1.cp1 18438  Latclat 18445  CLatccla 18512  OLcol 39134  Atomscatm 39223  HLchlt 39310  LHypclh 39945  LTrncltrn 40062  trLctrl 40119  TEndoctendo 40713  DIsoHcdih 41189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-0g 17457  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cntz 19304  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lvec 21070  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120  df-tendo 40716  df-edring 40718  df-disoa 40990  df-dvech 41040  df-dib 41100  df-dic 41134  df-dih 41190
This theorem is referenced by:  dihglbcN  41262
  Copyright terms: Public domain W3C validator