Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglbcpreN Structured version   Visualization version   GIF version

Theorem dihglbcpreN 41409
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglbc.b 𝐵 = (Base‘𝐾)
dihglbc.g 𝐺 = (glb‘𝐾)
dihglbc.h 𝐻 = (LHyp‘𝐾)
dihglbc.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglbc.l = (le‘𝐾)
dihglbcpre.j = (join‘𝐾)
dihglbcpre.m = (meet‘𝐾)
dihglbcpre.a 𝐴 = (Atoms‘𝐾)
dihglbcpre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglbcpre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglbcpre.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglbcpre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglbcpre.f 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
Assertion
Ref Expression
dihglbcpreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑞,   𝑔,𝑞,𝑥,   𝑥,   𝐴,𝑔,𝑞,𝑥   𝐵,𝑞,𝑥   𝑥,𝐸   𝑥,𝐹   𝐺,𝑞,𝑥   𝑔,𝐻,𝑞,𝑥   𝐼,𝑞   𝑔,𝐾,𝑞,𝑥   𝑃,𝑔   𝑥,𝑅   𝑆,𝑞,𝑥   𝑇,𝑔,𝑥   𝑔,𝑊,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑥,𝑞)   𝑅(𝑔,𝑞)   𝑆(𝑔)   𝑇(𝑞)   𝐸(𝑔,𝑞)   𝐹(𝑔,𝑞)   𝐺(𝑔)   𝐼(𝑥,𝑔)   (𝑔,𝑞)   (𝑔)

Proof of Theorem dihglbcpreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglbc.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dihglbc.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 41388 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
433ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel (𝐼‘(𝐺𝑆)))
5 simp2r 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆 ≠ ∅)
6 n0 4300 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
75, 6sylib 218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥 𝑥𝑆)
8 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 2dihvalrel 41388 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → Rel (𝐼𝑥))
128, 11jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ Rel (𝐼𝑥)))
1312ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
1413eximdv 1918 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
157, 14mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
16 df-rex 3057 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
1715, 16sylibr 234 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥𝑆 Rel (𝐼𝑥))
18 reliin 5756 . . 3 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
1917, 18syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel 𝑥𝑆 (𝐼𝑥))
20 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊))
21 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp1l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
23 hlclat 39467 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
25 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆𝐵)
26 dihglbc.b . . . . . . 7 𝐵 = (Base‘𝐾)
27 dihglbc.g . . . . . . 7 𝐺 = (glb‘𝐾)
2826, 27clatglbcl 18411 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2924, 25, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
30 simp3 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ¬ (𝐺𝑆) 𝑊)
31 dihglbc.l . . . . . 6 = (le‘𝐾)
32 dihglbcpre.j . . . . . 6 = (join‘𝐾)
33 dihglbcpre.m . . . . . 6 = (meet‘𝐾)
34 dihglbcpre.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3526, 31, 32, 33, 34, 1lhpmcvr2 40133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
3621, 29, 30, 35syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
37 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3829adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐺𝑆) ∈ 𝐵)
39 simpl3 1194 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ¬ (𝐺𝑆) 𝑊)
40 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
41 dihglbcpre.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
42 dihglbcpre.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
43 dihglbcpre.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
44 dihglbcpre.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
45 dihglbcpre.f . . . . . . . . . 10 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
46 vex 3440 . . . . . . . . . 10 𝑓 ∈ V
47 vex 3440 . . . . . . . . . 10 𝑠 ∈ V
4826, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 41358 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
4937, 38, 39, 40, 48syl121anc 1377 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
50 simpl2r 1228 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → 𝑆 ≠ ∅)
51 r19.28zv 4448 . . . . . . . . . . 11 (𝑆 ≠ ∅ → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
5250, 51syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
53 simp11 1204 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12l 1287 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑆𝐵)
55 simp3 1138 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5654, 55sseldd 3930 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
57 simp13 1206 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ (𝐺𝑆) 𝑊)
58 simp11l 1285 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5958, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
6026, 31, 27clatglble 18423 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆) → (𝐺𝑆) 𝑥)
6159, 54, 55, 60syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) 𝑥)
6258hllatd 39473 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
63293ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ 𝐵)
64 simp11r 1286 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐻)
6526, 1lhpbase 40107 . . . . . . . . . . . . . . . . 17 (𝑊𝐻𝑊𝐵)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐵)
6726, 31lattr 18350 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝐺𝑆) ∈ 𝐵𝑥𝐵𝑊𝐵)) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6862, 63, 56, 66, 67syl13anc 1374 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6961, 68mpand 695 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑊 → (𝐺𝑆) 𝑊))
7057, 69mtod 198 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 𝑊)
71 simp2l 1200 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
72 simp2ll 1241 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐴)
7326, 34atbase 39398 . . . . . . . . . . . . . . . . 17 (𝑞𝐴𝑞𝐵)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐵)
7526, 33latmcl 18346 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝐺𝑆) ∈ 𝐵𝑊𝐵) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7662, 63, 66, 75syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7726, 31, 32latlej1 18354 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑞𝐵 ∧ ((𝐺𝑆) 𝑊) ∈ 𝐵) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
7862, 74, 76, 77syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
79 simp2r 1201 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))
8078, 79breqtrd 5115 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝐺𝑆))
8126, 31, 62, 74, 63, 56, 80, 61lattrd 18352 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 𝑥)
8226, 31, 32, 33, 34atmod3i1 39973 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑥𝐵𝑊𝐵) ∧ 𝑞 𝑥) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
8358, 72, 56, 66, 81, 82syl131anc 1385 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
84 eqid 2731 . . . . . . . . . . . . . . . . 17 (1.‘𝐾) = (1.‘𝐾)
8531, 32, 84, 34, 1lhpjat2 40130 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑞 𝑊) = (1.‘𝐾))
8653, 71, 85syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 𝑊) = (1.‘𝐾))
8786oveq2d 7362 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (𝑞 𝑊)) = (𝑥 (1.‘𝐾)))
88 hlol 39470 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OL)
8958, 88syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ OL)
9026, 33, 84olm11 39336 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OL ∧ 𝑥𝐵) → (𝑥 (1.‘𝐾)) = 𝑥)
9189, 56, 90syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (1.‘𝐾)) = 𝑥)
9283, 87, 913eqtrd 2770 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = 𝑥)
9326, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 41358 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵 ∧ ¬ 𝑥 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑥 𝑊)) = 𝑥)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9453, 56, 70, 71, 92, 93syl122anc 1381 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
95943expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9695ralbidva 3153 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
97 simp11l 1285 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ HL)
9897, 23syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ CLat)
99 simp11 1204 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
100 simp3l 1202 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑓𝑇)
101 simp3r 1203 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑠𝐸)
10231, 34, 1, 41lhpocnel2 40128 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10399, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
104 simp2l 1200 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
10531, 34, 1, 42, 45ltrniotacl 40688 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐹𝑇)
10699, 103, 104, 105syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐹𝑇)
1071, 42, 44tendocl 40876 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
10899, 101, 106, 107syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1091, 42ltrncnv 40255 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐹) ∈ 𝑇) → (𝑠𝐹) ∈ 𝑇)
11099, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1111, 42ltrnco 40828 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇(𝑠𝐹) ∈ 𝑇) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11299, 100, 110, 111syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11326, 1, 42, 43trlcl 40273 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠𝐹)) ∈ 𝑇) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
11499, 112, 113syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
115 simp12l 1287 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑆𝐵)
11626, 31, 27clatleglb 18424 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵𝑆𝐵) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
11798, 114, 115, 116syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
1181173expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
119118pm5.32da 579 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
12052, 96, 1193bitr4rd 312 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
121 opex 5402 . . . . . . . . . 10 𝑓, 𝑠⟩ ∈ V
122 eliin 4944 . . . . . . . . . 10 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
123121, 122ax-mp 5 . . . . . . . . 9 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
124120, 123bitr4di 289 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
12549, 124bitrd 279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
126125exp44 437 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))))
127126imp4a 422 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))))
128127rexlimdv 3131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))
12936, 128mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
130129eqrelrdv2 5734 . 2 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
1314, 19, 20, 130syl21anc 837 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280  cop 4579   ciin 4940   class class class wbr 5089  ccnv 5613  ccom 5618  Rel wrel 5619  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  glbcglb 18216  joincjn 18217  meetcmee 18218  1.cp1 18328  Latclat 18337  CLatccla 18404  OLcol 39283  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267  TEndoctendo 40861  DIsoHcdih 41337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tendo 40864  df-edring 40866  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338
This theorem is referenced by:  dihglbcN  41410
  Copyright terms: Public domain W3C validator