Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglbcpreN Structured version   Visualization version   GIF version

Theorem dihglbcpreN 39763
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglbc.b 𝐵 = (Base‘𝐾)
dihglbc.g 𝐺 = (glb‘𝐾)
dihglbc.h 𝐻 = (LHyp‘𝐾)
dihglbc.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglbc.l = (le‘𝐾)
dihglbcpre.j = (join‘𝐾)
dihglbcpre.m = (meet‘𝐾)
dihglbcpre.a 𝐴 = (Atoms‘𝐾)
dihglbcpre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglbcpre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglbcpre.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglbcpre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglbcpre.f 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
Assertion
Ref Expression
dihglbcpreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑞,   𝑔,𝑞,𝑥,   𝑥,   𝐴,𝑔,𝑞,𝑥   𝐵,𝑞,𝑥   𝑥,𝐸   𝑥,𝐹   𝐺,𝑞,𝑥   𝑔,𝐻,𝑞,𝑥   𝐼,𝑞   𝑔,𝐾,𝑞,𝑥   𝑃,𝑔   𝑥,𝑅   𝑆,𝑞,𝑥   𝑇,𝑔,𝑥   𝑔,𝑊,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑥,𝑞)   𝑅(𝑔,𝑞)   𝑆(𝑔)   𝑇(𝑞)   𝐸(𝑔,𝑞)   𝐹(𝑔,𝑞)   𝐺(𝑔)   𝐼(𝑥,𝑔)   (𝑔,𝑞)   (𝑔)

Proof of Theorem dihglbcpreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglbc.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dihglbc.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 39742 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
433ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel (𝐼‘(𝐺𝑆)))
5 simp2r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆 ≠ ∅)
6 n0 4306 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
75, 6sylib 217 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥 𝑥𝑆)
8 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 2dihvalrel 39742 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → Rel (𝐼𝑥))
128, 11jca 512 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ Rel (𝐼𝑥)))
1312ex 413 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
1413eximdv 1920 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
157, 14mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
16 df-rex 3074 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
1715, 16sylibr 233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥𝑆 Rel (𝐼𝑥))
18 reliin 5773 . . 3 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
1917, 18syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel 𝑥𝑆 (𝐼𝑥))
20 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊))
21 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp1l 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
23 hlclat 37820 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
25 simp2l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆𝐵)
26 dihglbc.b . . . . . . 7 𝐵 = (Base‘𝐾)
27 dihglbc.g . . . . . . 7 𝐺 = (glb‘𝐾)
2826, 27clatglbcl 18394 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2924, 25, 28syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
30 simp3 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ¬ (𝐺𝑆) 𝑊)
31 dihglbc.l . . . . . 6 = (le‘𝐾)
32 dihglbcpre.j . . . . . 6 = (join‘𝐾)
33 dihglbcpre.m . . . . . 6 = (meet‘𝐾)
34 dihglbcpre.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3526, 31, 32, 33, 34, 1lhpmcvr2 38487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
3621, 29, 30, 35syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
37 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3829adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐺𝑆) ∈ 𝐵)
39 simpl3 1193 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ¬ (𝐺𝑆) 𝑊)
40 simpr 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
41 dihglbcpre.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
42 dihglbcpre.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
43 dihglbcpre.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
44 dihglbcpre.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
45 dihglbcpre.f . . . . . . . . . 10 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
46 vex 3449 . . . . . . . . . 10 𝑓 ∈ V
47 vex 3449 . . . . . . . . . 10 𝑠 ∈ V
4826, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 39712 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
4937, 38, 39, 40, 48syl121anc 1375 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
50 simpl2r 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → 𝑆 ≠ ∅)
51 r19.28zv 4458 . . . . . . . . . . 11 (𝑆 ≠ ∅ → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
5250, 51syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
53 simp11 1203 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12l 1286 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑆𝐵)
55 simp3 1138 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5654, 55sseldd 3945 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
57 simp13 1205 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ (𝐺𝑆) 𝑊)
58 simp11l 1284 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5958, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
6026, 31, 27clatglble 18406 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆) → (𝐺𝑆) 𝑥)
6159, 54, 55, 60syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) 𝑥)
6258hllatd 37826 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
63293ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ 𝐵)
64 simp11r 1285 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐻)
6526, 1lhpbase 38461 . . . . . . . . . . . . . . . . 17 (𝑊𝐻𝑊𝐵)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐵)
6726, 31lattr 18333 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝐺𝑆) ∈ 𝐵𝑥𝐵𝑊𝐵)) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6862, 63, 56, 66, 67syl13anc 1372 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6961, 68mpand 693 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑊 → (𝐺𝑆) 𝑊))
7057, 69mtod 197 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 𝑊)
71 simp2l 1199 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
72 simp2ll 1240 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐴)
7326, 34atbase 37751 . . . . . . . . . . . . . . . . 17 (𝑞𝐴𝑞𝐵)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐵)
7526, 33latmcl 18329 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝐺𝑆) ∈ 𝐵𝑊𝐵) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7662, 63, 66, 75syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7726, 31, 32latlej1 18337 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑞𝐵 ∧ ((𝐺𝑆) 𝑊) ∈ 𝐵) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
7862, 74, 76, 77syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
79 simp2r 1200 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))
8078, 79breqtrd 5131 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝐺𝑆))
8126, 31, 62, 74, 63, 56, 80, 61lattrd 18335 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 𝑥)
8226, 31, 32, 33, 34atmod3i1 38327 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑥𝐵𝑊𝐵) ∧ 𝑞 𝑥) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
8358, 72, 56, 66, 81, 82syl131anc 1383 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
84 eqid 2736 . . . . . . . . . . . . . . . . 17 (1.‘𝐾) = (1.‘𝐾)
8531, 32, 84, 34, 1lhpjat2 38484 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑞 𝑊) = (1.‘𝐾))
8653, 71, 85syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 𝑊) = (1.‘𝐾))
8786oveq2d 7373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (𝑞 𝑊)) = (𝑥 (1.‘𝐾)))
88 hlol 37823 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OL)
8958, 88syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ OL)
9026, 33, 84olm11 37689 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OL ∧ 𝑥𝐵) → (𝑥 (1.‘𝐾)) = 𝑥)
9189, 56, 90syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (1.‘𝐾)) = 𝑥)
9283, 87, 913eqtrd 2780 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = 𝑥)
9326, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 39712 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵 ∧ ¬ 𝑥 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑥 𝑊)) = 𝑥)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9453, 56, 70, 71, 92, 93syl122anc 1379 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
95943expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9695ralbidva 3172 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
97 simp11l 1284 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ HL)
9897, 23syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ CLat)
99 simp11 1203 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
100 simp3l 1201 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑓𝑇)
101 simp3r 1202 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑠𝐸)
10231, 34, 1, 41lhpocnel2 38482 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10399, 102syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
104 simp2l 1199 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
10531, 34, 1, 42, 45ltrniotacl 39042 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐹𝑇)
10699, 103, 104, 105syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐹𝑇)
1071, 42, 44tendocl 39230 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
10899, 101, 106, 107syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1091, 42ltrncnv 38609 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐹) ∈ 𝑇) → (𝑠𝐹) ∈ 𝑇)
11099, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1111, 42ltrnco 39182 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇(𝑠𝐹) ∈ 𝑇) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11299, 100, 110, 111syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11326, 1, 42, 43trlcl 38627 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠𝐹)) ∈ 𝑇) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
11499, 112, 113syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
115 simp12l 1286 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑆𝐵)
11626, 31, 27clatleglb 18407 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵𝑆𝐵) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
11798, 114, 115, 116syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
1181173expa 1118 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
119118pm5.32da 579 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
12052, 96, 1193bitr4rd 311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
121 opex 5421 . . . . . . . . . 10 𝑓, 𝑠⟩ ∈ V
122 eliin 4959 . . . . . . . . . 10 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
123121, 122ax-mp 5 . . . . . . . . 9 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
124120, 123bitr4di 288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
12549, 124bitrd 278 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
126125exp44 438 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))))
127126imp4a 423 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))))
128127rexlimdv 3150 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))
12936, 128mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
130129eqrelrdv2 5751 . 2 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
1314, 19, 20, 130syl21anc 836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282  cop 4592   ciin 4955   class class class wbr 5105  ccnv 5632  ccom 5637  Rel wrel 5638  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  lecple 17140  occoc 17141  glbcglb 18199  joincjn 18200  meetcmee 18201  1.cp1 18313  Latclat 18320  CLatccla 18387  OLcol 37636  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621  TEndoctendo 39215  DIsoHcdih 39691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692
This theorem is referenced by:  dihglbcN  39764
  Copyright terms: Public domain W3C validator