| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2740 |
. . . 4
⊢ (𝑛 = 𝑁 → (𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 2 | 1 | reubidv 3397 |
. . 3
⊢ (𝑛 = 𝑁 → (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 3 | | fveq2 6904 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 4 | 3 | oveq2d 7445 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑍𝐽(𝐹‘𝑦)) = (𝑍𝐽(𝐹‘𝑌))) |
| 5 | 3 | oveq2d 7445 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦)) = (〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))) |
| 6 | | oveq2 7437 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌)) |
| 7 | 6 | fveq1d 6906 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → ((𝑋𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑌)‘𝑘)) |
| 8 | | eqidd 2737 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → 𝑀 = 𝑀) |
| 9 | 5, 7, 8 | oveq123d 7450 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀) = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 10 | 9 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀) ↔ 𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 11 | 10 | reubidv 3397 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 12 | | oveq2 7437 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) |
| 13 | 12 | reueqdv 3421 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 14 | 11, 13 | bitrd 279 |
. . . . 5
⊢ (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 15 | 4, 14 | raleqbidv 3345 |
. . . 4
⊢ (𝑦 = 𝑌 → (∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀) ↔ ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 16 | | upciclem1.1 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) |
| 17 | | upciclem1.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 18 | 15, 16, 17 | rspcdva 3622 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 19 | | upciclem1.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
| 20 | 2, 18, 19 | rspcdva 3622 |
. 2
⊢ (𝜑 → ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 21 | | fveq2 6904 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((𝑋𝐺𝑌)‘𝑘) = ((𝑋𝐺𝑌)‘𝑚)) |
| 22 | 21 | oveq1d 7444 |
. . . . 5
⊢ (𝑘 = 𝑚 → (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 23 | 22 | eqeq2d 2747 |
. . . 4
⊢ (𝑘 = 𝑚 → (𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 24 | 23 | cbvreuvw 3403 |
. . 3
⊢
(∃!𝑘 ∈
(𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 25 | | fveq2 6904 |
. . . . . 6
⊢ (𝑚 = 𝑙 → ((𝑋𝐺𝑌)‘𝑚) = ((𝑋𝐺𝑌)‘𝑙)) |
| 26 | 25 | oveq1d 7444 |
. . . . 5
⊢ (𝑚 = 𝑙 → (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 27 | 26 | eqeq2d 2747 |
. . . 4
⊢ (𝑚 = 𝑙 → (𝑁 = (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 28 | 27 | cbvreuvw 3403 |
. . 3
⊢
(∃!𝑚 ∈
(𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 29 | 24, 28 | bitri 275 |
. 2
⊢
(∃!𝑘 ∈
(𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 30 | 20, 29 | sylib 218 |
1
⊢ (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |