Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem1 Structured version   Visualization version   GIF version

Theorem upciclem1 49139
Description: Lemma for upcic 49143, upeu 49144, and upeu2 49145. (Contributed by Zhi Wang, 16-Sep-2025.) (Proof shortened by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
upciclem1.1 (𝜑 → ∀𝑦𝐵𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
upciclem1.y (𝜑𝑌𝐵)
upciclem1.n (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
Assertion
Ref Expression
upciclem1 (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Distinct variable groups:   𝑦,𝐵   𝑘,𝐹   𝐹,𝑙   𝑛,𝐹,𝑦,𝑘   𝑘,𝐺   𝐺,𝑙   𝑛,𝐺,𝑦   𝑘,𝐻   𝐻,𝑙   𝑛,𝐻,𝑦   𝑛,𝐽,𝑦   𝑘,𝑀   𝑀,𝑙   𝑛,𝑀,𝑦   𝑘,𝑁   𝑁,𝑙   𝑛,𝑁   𝑘,𝑂   𝑂,𝑙   𝑛,𝑂,𝑦   𝑘,𝑋   𝑋,𝑙   𝑛,𝑋,𝑦   𝑘,𝑌   𝑌,𝑙   𝑛,𝑌,𝑦   𝑘,𝑍   𝑍,𝑙   𝑛,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘,𝑛,𝑙)   𝐵(𝑘,𝑛,𝑙)   𝐽(𝑘,𝑙)   𝑁(𝑦)

Proof of Theorem upciclem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . . 4 (𝑛 = 𝑁 → (𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
21reubidv 3374 . . 3 (𝑛 = 𝑁 → (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
3 fveq2 6860 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
43oveq2d 7405 . . . . 5 (𝑦 = 𝑌 → (𝑍𝐽(𝐹𝑦)) = (𝑍𝐽(𝐹𝑌)))
5 oveq2 7397 . . . . . 6 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
63oveq2d 7405 . . . . . . . 8 (𝑦 = 𝑌 → (⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦)) = (⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌)))
7 oveq2 7397 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌))
87fveq1d 6862 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑌)‘𝑘))
9 eqidd 2731 . . . . . . . 8 (𝑦 = 𝑌𝑀 = 𝑀)
106, 8, 9oveq123d 7410 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
1110eqeq2d 2741 . . . . . 6 (𝑦 = 𝑌 → (𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ 𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
125, 11reueqbidv 3397 . . . . 5 (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
134, 12raleqbidv 3321 . . . 4 (𝑦 = 𝑌 → (∀𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ ∀𝑛 ∈ (𝑍𝐽(𝐹𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
14 upciclem1.1 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
15 upciclem1.y . . . 4 (𝜑𝑌𝐵)
1613, 14, 15rspcdva 3592 . . 3 (𝜑 → ∀𝑛 ∈ (𝑍𝐽(𝐹𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
17 upciclem1.n . . 3 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
182, 16, 17rspcdva 3592 . 2 (𝜑 → ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
19 fveq2 6860 . . . . . 6 (𝑘 = 𝑚 → ((𝑋𝐺𝑌)‘𝑘) = ((𝑋𝐺𝑌)‘𝑚))
2019oveq1d 7404 . . . . 5 (𝑘 = 𝑚 → (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2120eqeq2d 2741 . . . 4 (𝑘 = 𝑚 → (𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2221cbvreuvw 3380 . . 3 (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
23 fveq2 6860 . . . . . 6 (𝑚 = 𝑙 → ((𝑋𝐺𝑌)‘𝑚) = ((𝑋𝐺𝑌)‘𝑙))
2423oveq1d 7404 . . . . 5 (𝑚 = 𝑙 → (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2524eqeq2d 2741 . . . 4 (𝑚 = 𝑙 → (𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2625cbvreuvw 3380 . . 3 (∃!𝑚 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2722, 26bitri 275 . 2 (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2818, 27sylib 218 1 (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  cop 4597  cfv 6513  (class class class)co 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392
This theorem is referenced by:  upciclem3  49141  upciclem4  49142  upeu  49144  upeu2  49145
  Copyright terms: Public domain W3C validator