Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem1 Structured version   Visualization version   GIF version

Theorem upciclem1 48922
Description: Lemma for upcic 48926, upeu 48927, and upeu2 48928. (Contributed by Zhi Wang, 16-Sep-2025.)
Hypotheses
Ref Expression
upciclem1.1 (𝜑 → ∀𝑦𝐵𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
upciclem1.y (𝜑𝑌𝐵)
upciclem1.n (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
Assertion
Ref Expression
upciclem1 (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Distinct variable groups:   𝑦,𝐵   𝑘,𝐹   𝐹,𝑙   𝑛,𝐹,𝑦,𝑘   𝑘,𝐺   𝐺,𝑙   𝑛,𝐺,𝑦   𝑘,𝐻   𝐻,𝑙   𝑛,𝐻,𝑦   𝑛,𝐽,𝑦   𝑘,𝑀   𝑀,𝑙   𝑛,𝑀,𝑦   𝑘,𝑁   𝑁,𝑙   𝑛,𝑁   𝑘,𝑂   𝑂,𝑙   𝑛,𝑂,𝑦   𝑘,𝑋   𝑋,𝑙   𝑛,𝑋,𝑦   𝑘,𝑌   𝑌,𝑙   𝑛,𝑌,𝑦   𝑘,𝑍   𝑍,𝑙   𝑛,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘,𝑛,𝑙)   𝐵(𝑘,𝑛,𝑙)   𝐽(𝑘,𝑙)   𝑁(𝑦)

Proof of Theorem upciclem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2738 . . . 4 (𝑛 = 𝑁 → (𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
21reubidv 3375 . . 3 (𝑛 = 𝑁 → (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
3 fveq2 6872 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
43oveq2d 7415 . . . . 5 (𝑦 = 𝑌 → (𝑍𝐽(𝐹𝑦)) = (𝑍𝐽(𝐹𝑌)))
53oveq2d 7415 . . . . . . . . 9 (𝑦 = 𝑌 → (⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦)) = (⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌)))
6 oveq2 7407 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌))
76fveq1d 6874 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑌)‘𝑘))
8 eqidd 2735 . . . . . . . . 9 (𝑦 = 𝑌𝑀 = 𝑀)
95, 7, 8oveq123d 7420 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
109eqeq2d 2745 . . . . . . 7 (𝑦 = 𝑌 → (𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ 𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
1110reubidv 3375 . . . . . 6 (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
12 oveq2 7407 . . . . . . 7 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
1312reueqdv 3399 . . . . . 6 (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
1411, 13bitrd 279 . . . . 5 (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
154, 14raleqbidv 3323 . . . 4 (𝑦 = 𝑌 → (∀𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀) ↔ ∀𝑛 ∈ (𝑍𝐽(𝐹𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
16 upciclem1.1 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ (𝑍𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
17 upciclem1.y . . . 4 (𝜑𝑌𝐵)
1815, 16, 17rspcdva 3600 . . 3 (𝜑 → ∀𝑛 ∈ (𝑍𝐽(𝐹𝑌))∃!𝑘 ∈ (𝑋𝐻𝑌)𝑛 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
19 upciclem1.n . . 3 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
202, 18, 19rspcdva 3600 . 2 (𝜑 → ∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
21 fveq2 6872 . . . . . 6 (𝑘 = 𝑚 → ((𝑋𝐺𝑌)‘𝑘) = ((𝑋𝐺𝑌)‘𝑚))
2221oveq1d 7414 . . . . 5 (𝑘 = 𝑚 → (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2322eqeq2d 2745 . . . 4 (𝑘 = 𝑚 → (𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2423cbvreuvw 3381 . . 3 (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
25 fveq2 6872 . . . . . 6 (𝑚 = 𝑙 → ((𝑋𝐺𝑌)‘𝑚) = ((𝑋𝐺𝑌)‘𝑙))
2625oveq1d 7414 . . . . 5 (𝑚 = 𝑙 → (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2726eqeq2d 2745 . . . 4 (𝑚 = 𝑙 → (𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2827cbvreuvw 3381 . . 3 (∃!𝑚 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑚)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2924, 28bitri 275 . 2 (∃!𝑘 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ↔ ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
3020, 29sylib 218 1 (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3355  cop 4605  cfv 6527  (class class class)co 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402
This theorem is referenced by:  upciclem3  48924  upciclem4  48925  upeu  48927  upeu2  48928
  Copyright terms: Public domain W3C validator