Step | Hyp | Ref
| Expression |
1 | | upfval.b |
. . 3
⊢ 𝐵 = (Base‘𝐷) |
2 | | upfval.c |
. . 3
⊢ 𝐶 = (Base‘𝐸) |
3 | | upfval.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
4 | | upfval.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
5 | | upfval.o |
. . 3
⊢ 𝑂 = (comp‘𝐸) |
6 | | upfval2.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐶) |
7 | | upfval3.f |
. . 3
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
8 | 1, 2, 3, 4, 5, 6, 7 | upfval3 48856 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) |
9 | | oveq1 7445 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) |
10 | | fveq2 6914 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
11 | 10 | opeq2d 4888 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 〈𝑊, (𝐹‘𝑥)〉 = 〈𝑊, (𝐹‘𝑋)〉) |
12 | 11 | oveq1d 7453 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦)) = (〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))) |
13 | | oveq1 7445 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦)) |
14 | 13 | fveq1d 6916 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘)) |
15 | | eqidd 2738 |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝑚 = 𝑚) |
16 | 12, 14, 15 | oveq123d 7459 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚)) |
17 | 16 | eqeq2d 2748 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
18 | 9, 17 | reueqbidv 3423 |
. . 3
⊢ (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
19 | 18 | 2ralbidv 3221 |
. 2
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
20 | | oveq2 7446 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) |
21 | 20 | eqeq2d 2748 |
. . . 4
⊢ (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
22 | 21 | reubidv 3398 |
. . 3
⊢ (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
23 | 22 | 2ralbidv 3221 |
. 2
⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
24 | | eqidd 2738 |
. 2
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → 𝐵 = 𝐵) |
25 | | simpl 482 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → 𝑥 = 𝑋) |
26 | 25 | fveq2d 6918 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
27 | 26 | oveq2d 7454 |
. 2
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → (𝑊𝐽(𝐹‘𝑥)) = (𝑊𝐽(𝐹‘𝑋))) |
28 | 8, 19, 23, 24, 27 | brab2ddw 48692 |
1
⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) |