Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuplem Structured version   Visualization version   GIF version

Theorem isuplem 48891
Description: Lemma for isup 48892 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
isuplem (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Distinct variable groups:   𝐵,𝑔,𝑘,𝑦   𝐶,𝑔,𝑘,𝑦   𝐷,𝑔,𝑘,𝑦   𝑔,𝐸,𝑘,𝑦   𝑔,𝐹,𝑘,𝑦   𝑔,𝐺,𝑘,𝑦   𝑔,𝐻,𝑘,𝑦   𝑔,𝐽,𝑘,𝑦   𝑔,𝑀,𝑘,𝑦   𝑔,𝑂,𝑘,𝑦   𝑔,𝑊,𝑘,𝑦   𝑔,𝑋,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem isuplem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
81, 2, 3, 4, 5, 6, 7upfval3 48890 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
9 oveq1 7421 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
10 fveq2 6887 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110opeq2d 4862 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑊, (𝐹𝑥)⟩ = ⟨𝑊, (𝐹𝑋)⟩)
1211oveq1d 7429 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)) = (⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦)))
13 oveq1 7421 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
1413fveq1d 6889 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘))
15 eqidd 2735 . . . . . 6 (𝑥 = 𝑋𝑚 = 𝑚)
1612, 14, 15oveq123d 7435 . . . . 5 (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚))
1716eqeq2d 2745 . . . 4 (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
189, 17reueqbidv 3407 . . 3 (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
19182ralbidv 3208 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
20 oveq2 7422 . . . . 5 (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
2120eqeq2d 2745 . . . 4 (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
2221reubidv 3382 . . 3 (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
23222ralbidv 3208 . 2 (𝑚 = 𝑀 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
24 eqidd 2735 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝐵 = 𝐵)
25 simpl 482 . . . 4 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝑥 = 𝑋)
2625fveq2d 6891 . . 3 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝐹𝑥) = (𝐹𝑋))
2726oveq2d 7430 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝑊𝐽(𝐹𝑥)) = (𝑊𝐽(𝐹𝑋)))
288, 19, 23, 24, 27brab2ddw 48684 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  cop 4614   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17875  df-up 48886
This theorem is referenced by:  isup  48892  uprcl4  48898  uprcl5  48899
  Copyright terms: Public domain W3C validator