| Step | Hyp | Ref
| Expression |
| 1 | | upfval.b |
. . 3
⊢ 𝐵 = (Base‘𝐷) |
| 2 | | upfval.c |
. . 3
⊢ 𝐶 = (Base‘𝐸) |
| 3 | | upfval.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
| 4 | | upfval.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
| 5 | | upfval.o |
. . 3
⊢ 𝑂 = (comp‘𝐸) |
| 6 | | upfval2.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| 7 | | upfval3.f |
. . 3
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | upfval3 48890 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) |
| 9 | | oveq1 7421 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) |
| 10 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 11 | 10 | opeq2d 4862 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 〈𝑊, (𝐹‘𝑥)〉 = 〈𝑊, (𝐹‘𝑋)〉) |
| 12 | 11 | oveq1d 7429 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦)) = (〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))) |
| 13 | | oveq1 7421 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦)) |
| 14 | 13 | fveq1d 6889 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘)) |
| 15 | | eqidd 2735 |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝑚 = 𝑚) |
| 16 | 12, 14, 15 | oveq123d 7435 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚)) |
| 17 | 16 | eqeq2d 2745 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
| 18 | 9, 17 | reueqbidv 3407 |
. . 3
⊢ (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
| 19 | 18 | 2ralbidv 3208 |
. 2
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚))) |
| 20 | | oveq2 7422 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) |
| 21 | 20 | eqeq2d 2745 |
. . . 4
⊢ (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| 22 | 21 | reubidv 3382 |
. . 3
⊢ (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| 23 | 22 | 2ralbidv 3208 |
. 2
⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| 24 | | eqidd 2735 |
. 2
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → 𝐵 = 𝐵) |
| 25 | | simpl 482 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → 𝑥 = 𝑋) |
| 26 | 25 | fveq2d 6891 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 27 | 26 | oveq2d 7430 |
. 2
⊢ ((𝑥 = 𝑋 ∧ 𝑚 = 𝑀) → (𝑊𝐽(𝐹‘𝑥)) = (𝑊𝐽(𝐹‘𝑋))) |
| 28 | 8, 19, 23, 24, 27 | brab2ddw 48684 |
1
⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) |