Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuplem Structured version   Visualization version   GIF version

Theorem isuplem 48857
Description: Lemma for isup 48858 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
isuplem (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Distinct variable groups:   𝐵,𝑔,𝑘,𝑦   𝐶,𝑔,𝑘,𝑦   𝐷,𝑔,𝑘,𝑦   𝑔,𝐸,𝑘,𝑦   𝑔,𝐹,𝑘,𝑦   𝑔,𝐺,𝑘,𝑦   𝑔,𝐻,𝑘,𝑦   𝑔,𝐽,𝑘,𝑦   𝑔,𝑀,𝑘,𝑦   𝑔,𝑂,𝑘,𝑦   𝑔,𝑊,𝑘,𝑦   𝑔,𝑋,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem isuplem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
81, 2, 3, 4, 5, 6, 7upfval3 48856 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
9 oveq1 7445 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
10 fveq2 6914 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110opeq2d 4888 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑊, (𝐹𝑥)⟩ = ⟨𝑊, (𝐹𝑋)⟩)
1211oveq1d 7453 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)) = (⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦)))
13 oveq1 7445 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
1413fveq1d 6916 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘))
15 eqidd 2738 . . . . . 6 (𝑥 = 𝑋𝑚 = 𝑚)
1612, 14, 15oveq123d 7459 . . . . 5 (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚))
1716eqeq2d 2748 . . . 4 (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
189, 17reueqbidv 3423 . . 3 (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
19182ralbidv 3221 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
20 oveq2 7446 . . . . 5 (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
2120eqeq2d 2748 . . . 4 (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
2221reubidv 3398 . . 3 (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
23222ralbidv 3221 . 2 (𝑚 = 𝑀 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
24 eqidd 2738 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝐵 = 𝐵)
25 simpl 482 . . . 4 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝑥 = 𝑋)
2625fveq2d 6918 . . 3 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝐹𝑥) = (𝐹𝑋))
2726oveq2d 7454 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝑊𝐽(𝐹𝑥)) = (𝑊𝐽(𝐹𝑋)))
288, 19, 23, 24, 27brab2ddw 48692 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wral 3061  ∃!wreu 3378  cop 4640   class class class wbr 5151  cfv 6569  (class class class)co 7438  Basecbs 17254  Hom chom 17318  compcco 17319   Func cfunc 17914  UPcup 48851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-func 17918  df-up 48852
This theorem is referenced by:  isup  48858  uprcl4  48863  uprcl5  48864
  Copyright terms: Public domain W3C validator