Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuplem Structured version   Visualization version   GIF version

Theorem isuplem 49304
Description: Lemma for isup 49305 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
isuplem (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Distinct variable groups:   𝐵,𝑔,𝑘,𝑦   𝐶,𝑔,𝑘,𝑦   𝐷,𝑔,𝑘,𝑦   𝑔,𝐸,𝑘,𝑦   𝑔,𝐹,𝑘,𝑦   𝑔,𝐺,𝑘,𝑦   𝑔,𝐻,𝑘,𝑦   𝑔,𝐽,𝑘,𝑦   𝑔,𝑀,𝑘,𝑦   𝑔,𝑂,𝑘,𝑦   𝑔,𝑊,𝑘,𝑦   𝑔,𝑋,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem isuplem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
81, 2, 3, 4, 5, 6, 7upfval3 49303 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
9 oveq1 7359 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
10 fveq2 6828 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110opeq2d 4831 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑊, (𝐹𝑥)⟩ = ⟨𝑊, (𝐹𝑋)⟩)
1211oveq1d 7367 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)) = (⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦)))
13 oveq1 7359 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
1413fveq1d 6830 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘))
15 eqidd 2734 . . . . . 6 (𝑥 = 𝑋𝑚 = 𝑚)
1612, 14, 15oveq123d 7373 . . . . 5 (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚))
1716eqeq2d 2744 . . . 4 (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
189, 17reueqbidv 3385 . . 3 (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
19182ralbidv 3197 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
20 oveq2 7360 . . . . 5 (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
2120eqeq2d 2744 . . . 4 (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
2221reubidv 3363 . . 3 (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
23222ralbidv 3197 . 2 (𝑚 = 𝑀 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
24 eqidd 2734 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝐵 = 𝐵)
25 simpl 482 . . . 4 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝑥 = 𝑋)
2625fveq2d 6832 . . 3 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝐹𝑥) = (𝐹𝑋))
2726oveq2d 7368 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝑊𝐽(𝐹𝑥)) = (𝑊𝐽(𝐹𝑋)))
288, 19, 23, 24, 27brab2ddw 48953 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175   Func cfunc 17763   UP cup 49298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-func 17767  df-up 49299
This theorem is referenced by:  isup  49305  uprcl4  49316  uprcl5  49317
  Copyright terms: Public domain W3C validator