Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuplem Structured version   Visualization version   GIF version

Theorem isuplem 49168
Description: Lemma for isup 49169 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
isuplem (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Distinct variable groups:   𝐵,𝑔,𝑘,𝑦   𝐶,𝑔,𝑘,𝑦   𝐷,𝑔,𝑘,𝑦   𝑔,𝐸,𝑘,𝑦   𝑔,𝐹,𝑘,𝑦   𝑔,𝐺,𝑘,𝑦   𝑔,𝐻,𝑘,𝑦   𝑔,𝐽,𝑘,𝑦   𝑔,𝑀,𝑘,𝑦   𝑔,𝑂,𝑘,𝑦   𝑔,𝑊,𝑘,𝑦   𝑔,𝑋,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem isuplem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
81, 2, 3, 4, 5, 6, 7upfval3 49167 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
9 oveq1 7394 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
10 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110opeq2d 4844 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑊, (𝐹𝑥)⟩ = ⟨𝑊, (𝐹𝑋)⟩)
1211oveq1d 7402 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)) = (⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦)))
13 oveq1 7394 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
1413fveq1d 6860 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐺𝑦)‘𝑘) = ((𝑋𝐺𝑦)‘𝑘))
15 eqidd 2730 . . . . . 6 (𝑥 = 𝑋𝑚 = 𝑚)
1612, 14, 15oveq123d 7408 . . . . 5 (𝑥 = 𝑋 → (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚))
1716eqeq2d 2740 . . . 4 (𝑥 = 𝑋 → (𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
189, 17reueqbidv 3394 . . 3 (𝑥 = 𝑋 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
19182ralbidv 3201 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚)))
20 oveq2 7395 . . . . 5 (𝑚 = 𝑀 → (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))
2120eqeq2d 2740 . . . 4 (𝑚 = 𝑀 → (𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ 𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
2221reubidv 3372 . . 3 (𝑚 = 𝑀 → (∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
23222ralbidv 3201 . 2 (𝑚 = 𝑀 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀)))
24 eqidd 2730 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝐵 = 𝐵)
25 simpl 482 . . . 4 ((𝑥 = 𝑋𝑚 = 𝑀) → 𝑥 = 𝑋)
2625fveq2d 6862 . . 3 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝐹𝑥) = (𝐹𝑋))
2726oveq2d 7403 . 2 ((𝑥 = 𝑋𝑚 = 𝑀) → (𝑊𝐽(𝐹𝑥)) = (𝑊𝐽(𝐹𝑋)))
288, 19, 23, 24, 27brab2ddw 48817 1 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋𝐵𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑦))𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-func 17820  df-up 49163
This theorem is referenced by:  isup  49169  uprcl4  49180  uprcl5  49181
  Copyright terms: Public domain W3C validator