Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcup3lem Structured version   Visualization version   GIF version

Theorem oppcup3lem 49002
Description: Lemma for oppcup3 49005. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
oppcup3lem.1 (𝜑 → ∀𝑦𝐵𝑛 ∈ ((𝐹𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)))
oppcup3lem.y (𝜑𝑌𝐵)
oppcup3lem.n (𝜑𝑁 ∈ ((𝐹𝑌)𝐽𝑍))
Assertion
Ref Expression
oppcup3lem (𝜑 → ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))
Distinct variable groups:   𝑦,𝐵   𝑘,𝐹   𝐹,𝑙   𝑛,𝐹,𝑦,𝑘   𝑘,𝐺   𝐺,𝑙   𝑛,𝐺,𝑦   𝑘,𝐻   𝐻,𝑙   𝑛,𝐻,𝑦   𝑛,𝐽,𝑦   𝑘,𝑀   𝑀,𝑙   𝑛,𝑀,𝑦   𝑘,𝑁   𝑁,𝑙   𝑛,𝑁   𝑘,𝑂   𝑂,𝑙   𝑛,𝑂,𝑦   𝑘,𝑋   𝑋,𝑙   𝑛,𝑋,𝑦   𝑘,𝑌   𝑌,𝑙   𝑛,𝑌,𝑦   𝑘,𝑍   𝑍,𝑙   𝑛,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘,𝑛,𝑙)   𝐵(𝑘,𝑛,𝑙)   𝐽(𝑘,𝑙)   𝑁(𝑦)

Proof of Theorem oppcup3lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2738 . . . 4 (𝑛 = 𝑁 → (𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ 𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))))
21reubidv 3375 . . 3 (𝑛 = 𝑁 → (∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))))
3 fveq2 6873 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
43oveq1d 7415 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑦)𝐽𝑍) = ((𝐹𝑌)𝐽𝑍))
5 oveq1 7407 . . . . . 6 (𝑦 = 𝑌 → (𝑦𝐻𝑋) = (𝑌𝐻𝑋))
63opeq1d 4853 . . . . . . . . 9 (𝑦 = 𝑌 → ⟨(𝐹𝑦), (𝐹𝑋)⟩ = ⟨(𝐹𝑌), (𝐹𝑋)⟩)
76oveq1d 7415 . . . . . . . 8 (𝑦 = 𝑌 → (⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍) = (⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍))
8 eqidd 2735 . . . . . . . 8 (𝑦 = 𝑌𝑀 = 𝑀)
9 oveq1 7407 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦𝐺𝑋) = (𝑌𝐺𝑋))
109fveq1d 6875 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑦𝐺𝑋)‘𝑘) = ((𝑌𝐺𝑋)‘𝑘))
117, 8, 10oveq123d 7421 . . . . . . 7 (𝑦 = 𝑌 → (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))
1211eqeq2d 2745 . . . . . 6 (𝑦 = 𝑌 → (𝑛 = (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ 𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))))
135, 12reueqbidv 3400 . . . . 5 (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))))
144, 13raleqbidv 3323 . . . 4 (𝑦 = 𝑌 → (∀𝑛 ∈ ((𝐹𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ ∀𝑛 ∈ ((𝐹𝑌)𝐽𝑍)∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))))
15 oppcup3lem.1 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ((𝐹𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑦), (𝐹𝑋)⟩𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)))
16 oppcup3lem.y . . . 4 (𝜑𝑌𝐵)
1714, 15, 16rspcdva 3600 . . 3 (𝜑 → ∀𝑛 ∈ ((𝐹𝑌)𝐽𝑍)∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))
18 oppcup3lem.n . . 3 (𝜑𝑁 ∈ ((𝐹𝑌)𝐽𝑍))
192, 17, 18rspcdva 3600 . 2 (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))
20 fveq2 6873 . . . . . 6 (𝑘 = 𝑚 → ((𝑌𝐺𝑋)‘𝑘) = ((𝑌𝐺𝑋)‘𝑚))
2120oveq2d 7416 . . . . 5 (𝑘 = 𝑚 → (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)))
2221eqeq2d 2745 . . . 4 (𝑘 = 𝑚 → (𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ 𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚))))
2322cbvreuvw 3381 . . 3 (∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑚 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)))
24 fveq2 6873 . . . . . 6 (𝑚 = 𝑙 → ((𝑌𝐺𝑋)‘𝑚) = ((𝑌𝐺𝑋)‘𝑙))
2524oveq2d 7416 . . . . 5 (𝑚 = 𝑙 → (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))
2625eqeq2d 2745 . . . 4 (𝑚 = 𝑙 → (𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) ↔ 𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))))
2726cbvreuvw 3381 . . 3 (∃!𝑚 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))
2823, 27bitri 275 . 2 (∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))
2919, 28sylib 218 1 (𝜑 → ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(⟨(𝐹𝑌), (𝐹𝑋)⟩𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3355  cop 4605  cfv 6528  (class class class)co 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-reu 3358  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-ov 7403
This theorem is referenced by:  oppcup3  49005
  Copyright terms: Public domain W3C validator