| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2738 |
. . . 4
⊢ (𝑛 = 𝑁 → (𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ 𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))) |
| 2 | 1 | reubidv 3375 |
. . 3
⊢ (𝑛 = 𝑁 → (∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))) |
| 3 | | fveq2 6873 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 4 | 3 | oveq1d 7415 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑦)𝐽𝑍) = ((𝐹‘𝑌)𝐽𝑍)) |
| 5 | | oveq1 7407 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑦𝐻𝑋) = (𝑌𝐻𝑋)) |
| 6 | 3 | opeq1d 4853 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → 〈(𝐹‘𝑦), (𝐹‘𝑋)〉 = 〈(𝐹‘𝑌), (𝐹‘𝑋)〉) |
| 7 | 6 | oveq1d 7415 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍) = (〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)) |
| 8 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → 𝑀 = 𝑀) |
| 9 | | oveq1 7407 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑦𝐺𝑋) = (𝑌𝐺𝑋)) |
| 10 | 9 | fveq1d 6875 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑦𝐺𝑋)‘𝑘) = ((𝑌𝐺𝑋)‘𝑘)) |
| 11 | 7, 8, 10 | oveq123d 7421 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))) |
| 12 | 11 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ 𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))) |
| 13 | 5, 12 | reueqbidv 3400 |
. . . . 5
⊢ (𝑦 = 𝑌 → (∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))) |
| 14 | 4, 13 | raleqbidv 3323 |
. . . 4
⊢ (𝑦 = 𝑌 → (∀𝑛 ∈ ((𝐹‘𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘)) ↔ ∀𝑛 ∈ ((𝐹‘𝑌)𝐽𝑍)∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)))) |
| 15 | | oppcup3lem.1 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ ((𝐹‘𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘))) |
| 16 | | oppcup3lem.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 17 | 14, 15, 16 | rspcdva 3600 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ((𝐹‘𝑌)𝐽𝑍)∃!𝑘 ∈ (𝑌𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))) |
| 18 | | oppcup3lem.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑍)) |
| 19 | 2, 17, 18 | rspcdva 3600 |
. 2
⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘))) |
| 20 | | fveq2 6873 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((𝑌𝐺𝑋)‘𝑘) = ((𝑌𝐺𝑋)‘𝑚)) |
| 21 | 20 | oveq2d 7416 |
. . . . 5
⊢ (𝑘 = 𝑚 → (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚))) |
| 22 | 21 | eqeq2d 2745 |
. . . 4
⊢ (𝑘 = 𝑚 → (𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ 𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)))) |
| 23 | 22 | cbvreuvw 3381 |
. . 3
⊢
(∃!𝑘 ∈
(𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑚 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚))) |
| 24 | | fveq2 6873 |
. . . . . 6
⊢ (𝑚 = 𝑙 → ((𝑌𝐺𝑋)‘𝑚) = ((𝑌𝐺𝑋)‘𝑙)) |
| 25 | 24 | oveq2d 7416 |
. . . . 5
⊢ (𝑚 = 𝑙 → (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) |
| 26 | 25 | eqeq2d 2745 |
. . . 4
⊢ (𝑚 = 𝑙 → (𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) ↔ 𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙)))) |
| 27 | 26 | cbvreuvw 3381 |
. . 3
⊢
(∃!𝑚 ∈
(𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑚)) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) |
| 28 | 23, 27 | bitri 275 |
. 2
⊢
(∃!𝑘 ∈
(𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑘)) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) |
| 29 | 19, 28 | sylib 218 |
1
⊢ (𝜑 → ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) |