| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zriotaneg | Structured version Visualization version GIF version | ||
| Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
| Ref | Expression |
|---|---|
| zriotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| zriotaneg | ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | nfriota1 7374 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℤ 𝜓) | |
| 3 | 2 | nfneg 11483 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℤ 𝜓) |
| 4 | znegcl 12632 | . . . 4 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
| 6 | simpr 484 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) | |
| 7 | 6 | znegcld 12704 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) |
| 8 | zriotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | negeq 11479 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℤ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℤ 𝜓)) | |
| 10 | znegcl 12632 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 11 | zcn 12598 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 12 | zcn 12598 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 13 | negcon2 11541 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 15 | 10, 14 | reuhyp 5395 | . . . 4 ⊢ (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
| 17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7401 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
| 18 | 1, 17 | mpan 690 | 1 ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃!wreu 3362 ℩crio 7366 ℂcc 11132 -cneg 11472 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-nn 12246 df-z 12594 |
| This theorem is referenced by: dfceil2 13861 |
| Copyright terms: Public domain | W3C validator |