![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zriotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
Ref | Expression |
---|---|
zriotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
zriotaneg | ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . 2 ⊢ ⊤ | |
2 | nfriota1 7321 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℤ 𝜓) | |
3 | 2 | nfneg 11398 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℤ 𝜓) |
4 | znegcl 12539 | . . . 4 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
6 | simpr 486 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) | |
7 | 6 | znegcld 12610 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) |
8 | zriotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 11394 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℤ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℤ 𝜓)) | |
10 | znegcl 12539 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
11 | zcn 12505 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
12 | zcn 12505 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
13 | negcon2 11455 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 597 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5376 | . . . 4 ⊢ (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
16 | 15 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7349 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
18 | 1, 17 | mpan 689 | 1 ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ∃!wreu 3352 ℩crio 7313 ℂcc 11050 -cneg 11387 ℤcz 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-sub 11388 df-neg 11389 df-nn 12155 df-z 12501 |
This theorem is referenced by: dfceil2 13745 |
Copyright terms: Public domain | W3C validator |