Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zriotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
Ref | Expression |
---|---|
zriotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
zriotaneg | ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | nfriota1 7116 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℤ 𝜓) | |
3 | 2 | nfneg 10913 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℤ 𝜓) |
4 | znegcl 12049 | . . . 4 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
5 | 4 | adantl 486 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
6 | simpr 489 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) | |
7 | 6 | znegcld 12121 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) |
8 | zriotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 10909 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℤ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℤ 𝜓)) | |
10 | znegcl 12049 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
11 | zcn 12018 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
12 | zcn 12018 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
13 | negcon2 10970 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 599 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5290 | . . . 4 ⊢ (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
16 | 15 | adantl 486 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7143 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
18 | 1, 17 | mpan 690 | 1 ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ⊤wtru 1540 ∈ wcel 2112 ∃!wreu 3073 ℩crio 7108 ℂcc 10566 -cneg 10902 ℤcz 12013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-ltxr 10711 df-sub 10903 df-neg 10904 df-nn 11668 df-z 12014 |
This theorem is referenced by: dfceil2 13251 |
Copyright terms: Public domain | W3C validator |