![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zriotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
Ref | Expression |
---|---|
zriotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
zriotaneg | ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1545 | . 2 ⊢ ⊤ | |
2 | nfriota1 7356 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℤ 𝜓) | |
3 | 2 | nfneg 11438 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℤ 𝜓) |
4 | znegcl 12579 | . . . 4 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
5 | 4 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
6 | simpr 485 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) | |
7 | 6 | znegcld 12650 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(℩𝑦 ∈ ℤ 𝜓) ∈ ℤ) |
8 | zriotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 11434 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℤ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℤ 𝜓)) | |
10 | znegcl 12579 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
11 | zcn 12545 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
12 | zcn 12545 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
13 | negcon2 11495 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5411 | . . . 4 ⊢ (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
16 | 15 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7384 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
18 | 1, 17 | mpan 688 | 1 ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ∃!wreu 3373 ℩crio 7348 ℂcc 11090 -cneg 11427 ℤcz 12540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-ltxr 11235 df-sub 11428 df-neg 11429 df-nn 12195 df-z 12541 |
This theorem is referenced by: dfceil2 13786 |
Copyright terms: Public domain | W3C validator |