MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zriotaneg Structured version   Visualization version   GIF version

Theorem zriotaneg 12617
Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.)
Hypothesis
Ref Expression
zriotaneg.1 (𝑥 = -𝑦 → (𝜑𝜓))
Assertion
Ref Expression
zriotaneg (∃!𝑥 ∈ ℤ 𝜑 → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem zriotaneg
StepHypRef Expression
1 tru 1546 . 2
2 nfriota1 7321 . . . 4 𝑦(𝑦 ∈ ℤ 𝜓)
32nfneg 11398 . . 3 𝑦-(𝑦 ∈ ℤ 𝜓)
4 znegcl 12539 . . . 4 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
54adantl 483 . . 3 ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
6 simpr 486 . . . 4 ((⊤ ∧ (𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (𝑦 ∈ ℤ 𝜓) ∈ ℤ)
76znegcld 12610 . . 3 ((⊤ ∧ (𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(𝑦 ∈ ℤ 𝜓) ∈ ℤ)
8 zriotaneg.1 . . 3 (𝑥 = -𝑦 → (𝜑𝜓))
9 negeq 11394 . . 3 (𝑦 = (𝑦 ∈ ℤ 𝜓) → -𝑦 = -(𝑦 ∈ ℤ 𝜓))
10 znegcl 12539 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
11 zcn 12505 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 12505 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 negcon2 11455 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
1411, 12, 13syl2an 597 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦𝑦 = -𝑥))
1510, 14reuhyp 5376 . . . 4 (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦)
1615adantl 483 . . 3 ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦)
173, 5, 7, 8, 9, 16riotaxfrd 7349 . 2 ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
181, 17mpan 689 1 (∃!𝑥 ∈ ℤ 𝜑 → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wtru 1543  wcel 2107  ∃!wreu 3352  crio 7313  cc 11050  -cneg 11387  cz 12500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-ltxr 11195  df-sub 11388  df-neg 11389  df-nn 12155  df-z 12501
This theorem is referenced by:  dfceil2  13745
  Copyright terms: Public domain W3C validator