MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zriotaneg Structured version   Visualization version   GIF version

Theorem zriotaneg 12364
Description: The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.)
Hypothesis
Ref Expression
zriotaneg.1 (𝑥 = -𝑦 → (𝜑𝜓))
Assertion
Ref Expression
zriotaneg (∃!𝑥 ∈ ℤ 𝜑 → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem zriotaneg
StepHypRef Expression
1 tru 1543 . 2
2 nfriota1 7219 . . . 4 𝑦(𝑦 ∈ ℤ 𝜓)
32nfneg 11147 . . 3 𝑦-(𝑦 ∈ ℤ 𝜓)
4 znegcl 12285 . . . 4 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
54adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
6 simpr 484 . . . 4 ((⊤ ∧ (𝑦 ∈ ℤ 𝜓) ∈ ℤ) → (𝑦 ∈ ℤ 𝜓) ∈ ℤ)
76znegcld 12357 . . 3 ((⊤ ∧ (𝑦 ∈ ℤ 𝜓) ∈ ℤ) → -(𝑦 ∈ ℤ 𝜓) ∈ ℤ)
8 zriotaneg.1 . . 3 (𝑥 = -𝑦 → (𝜑𝜓))
9 negeq 11143 . . 3 (𝑦 = (𝑦 ∈ ℤ 𝜓) → -𝑦 = -(𝑦 ∈ ℤ 𝜓))
10 znegcl 12285 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
11 zcn 12254 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 12254 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 negcon2 11204 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
1411, 12, 13syl2an 595 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 = -𝑦𝑦 = -𝑥))
1510, 14reuhyp 5338 . . . 4 (𝑥 ∈ ℤ → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦)
1615adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ ℤ 𝑥 = -𝑦)
173, 5, 7, 8, 9, 16riotaxfrd 7247 . 2 ((⊤ ∧ ∃!𝑥 ∈ ℤ 𝜑) → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
181, 17mpan 686 1 (∃!𝑥 ∈ ℤ 𝜑 → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  ∃!wreu 3065  crio 7211  cc 10800  -cneg 11136  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-nn 11904  df-z 12250
This theorem is referenced by:  dfceil2  13487
  Copyright terms: Public domain W3C validator