MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfr1 Structured version   Visualization version   GIF version

Theorem reuxfr1 3735
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5390 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
reuxfr1.1 (𝑦𝐶𝐴𝐵)
reuxfr1.2 (𝑥𝐵 → ∃!𝑦𝐶 𝑥 = 𝐴)
reuxfr1.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reuxfr1 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑦𝐶 𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem reuxfr1
StepHypRef Expression
1 reuxfr1.1 . . . 4 (𝑦𝐶𝐴𝐵)
21adantl 481 . . 3 ((⊤ ∧ 𝑦𝐶) → 𝐴𝐵)
3 reuxfr1.2 . . . 4 (𝑥𝐵 → ∃!𝑦𝐶 𝑥 = 𝐴)
43adantl 481 . . 3 ((⊤ ∧ 𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
5 reuxfr1.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
62, 4, 5reuxfr1ds 3734 . 2 (⊤ → (∃!𝑥𝐵 𝜑 ↔ ∃!𝑦𝐶 𝜓))
76mptru 1547 1 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑦𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wtru 1541  wcel 2108  ∃!wreu 3357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360
This theorem is referenced by:  zmax  12959  rebtwnz  12961
  Copyright terms: Public domain W3C validator