![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuxfr1 | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5438 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
reuxfr1.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
reuxfr1.2 | ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
reuxfr1.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reuxfr1 | ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
3 | reuxfr1.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
5 | reuxfr1.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | reuxfr1ds 3773 | . 2 ⊢ (⊤ → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |
7 | 6 | mptru 1544 | 1 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: zmax 13010 rebtwnz 13012 |
Copyright terms: Public domain | W3C validator |