| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuxfr1 | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5356 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.) |
| Ref | Expression |
|---|---|
| reuxfr1.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
| reuxfr1.2 | ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| reuxfr1.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reuxfr1 | ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| 3 | reuxfr1.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 5 | reuxfr1.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | reuxfr1ds 3705 | . 2 ⊢ (⊤ → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |
| 7 | 6 | mptru 1548 | 1 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∃!wreu 3344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: zmax 12843 rebtwnz 12845 |
| Copyright terms: Public domain | W3C validator |