Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuxfr1 | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5338 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
reuxfr1.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
reuxfr1.2 | ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
reuxfr1.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reuxfr1 | ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
3 | reuxfr1.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
5 | reuxfr1.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | reuxfr1ds 3681 | . 2 ⊢ (⊤ → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓)) |
7 | 6 | mptru 1546 | 1 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∃!wreu 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 |
This theorem is referenced by: zmax 12614 rebtwnz 12616 |
Copyright terms: Public domain | W3C validator |