| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version GIF version | ||
| Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
| Ref | Expression |
|---|---|
| rebtwnz | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 11424 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 2 | zbtwnre 12844 | . . 3 ⊢ (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) |
| 4 | znegcl 12507 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 5 | znegcl 12507 | . . . . 5 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
| 6 | zcn 12473 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 7 | zcn 12473 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 8 | negcon2 11414 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) |
| 10 | 5, 9 | reuhyp 5356 | . . . 4 ⊢ (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥) |
| 11 | breq2 5093 | . . . . 5 ⊢ (𝑦 = -𝑥 → (-𝐴 ≤ 𝑦 ↔ -𝐴 ≤ -𝑥)) | |
| 12 | breq1 5092 | . . . . 5 ⊢ (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1))) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑦 = -𝑥 → ((-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
| 14 | 4, 10, 13 | reuxfr1 3706 | . . 3 ⊢ (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))) |
| 15 | zre 12472 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 16 | leneg 11620 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) | |
| 17 | 16 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
| 18 | peano2rem 11428 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
| 19 | ltneg 11617 | . . . . . . . . 9 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) | |
| 20 | 18, 19 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) |
| 21 | 1re 11112 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 22 | ltsubadd 11587 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) | |
| 23 | 21, 22 | mp3an2 1451 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) |
| 24 | recn 11096 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 25 | ax-1cn 11064 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
| 26 | negsubdi 11417 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
| 27 | 24, 25, 26 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1)) |
| 28 | 27 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1)) |
| 29 | 28 | breq2d 5101 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1))) |
| 30 | 20, 23, 29 | 3bitr3d 309 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1))) |
| 31 | 17, 30 | anbi12d 632 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
| 32 | 15, 31 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
| 33 | 32 | bicomd 223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 34 | 33 | reubidva 3360 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 35 | 14, 34 | bitrid 283 | . 2 ⊢ (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 36 | 3, 35 | mpbid 232 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 -cneg 11345 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: flcl 13699 fllelt 13701 flflp1 13711 flbi 13720 ltflcei 37656 |
| Copyright terms: Public domain | W3C validator |