![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version GIF version |
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
rebtwnz | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 11530 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | zbtwnre 12937 | . . 3 ⊢ (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) |
4 | znegcl 12604 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | znegcl 12604 | . . . . 5 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
6 | zcn 12570 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 12570 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
8 | negcon2 11520 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) | |
9 | 6, 7, 8 | syl2an 595 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) |
10 | 5, 9 | reuhyp 5418 | . . . 4 ⊢ (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥) |
11 | breq2 5152 | . . . . 5 ⊢ (𝑦 = -𝑥 → (-𝐴 ≤ 𝑦 ↔ -𝐴 ≤ -𝑥)) | |
12 | breq1 5151 | . . . . 5 ⊢ (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1))) | |
13 | 11, 12 | anbi12d 630 | . . . 4 ⊢ (𝑦 = -𝑥 → ((-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
14 | 4, 10, 13 | reuxfr1 3748 | . . 3 ⊢ (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))) |
15 | zre 12569 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
16 | leneg 11724 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) | |
17 | 16 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
18 | peano2rem 11534 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
19 | ltneg 11721 | . . . . . . . . 9 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) | |
20 | 18, 19 | sylan 579 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) |
21 | 1re 11221 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
22 | ltsubadd 11691 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) | |
23 | 21, 22 | mp3an2 1448 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) |
24 | recn 11206 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11174 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
26 | negsubdi 11523 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
27 | 24, 25, 26 | sylancl 585 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1)) |
28 | 27 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1)) |
29 | 28 | breq2d 5160 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1))) |
30 | 20, 23, 29 | 3bitr3d 309 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1))) |
31 | 17, 30 | anbi12d 630 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
32 | 15, 31 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
33 | 32 | bicomd 222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
34 | 33 | reubidva 3391 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
35 | 14, 34 | bitrid 283 | . 2 ⊢ (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
36 | 3, 35 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃!wreu 3373 class class class wbr 5148 (class class class)co 7412 ℂcc 11114 ℝcr 11115 1c1 11117 + caddc 11119 < clt 11255 ≤ cle 11256 − cmin 11451 -cneg 11452 ℤcz 12565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 |
This theorem is referenced by: flcl 13767 fllelt 13769 flflp1 13779 flbi 13788 ltflcei 36942 |
Copyright terms: Public domain | W3C validator |