MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Visualization version   GIF version

Theorem rebtwnz 12341
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 renegcl 10943 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zbtwnre 12340 . . 3 (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
4 znegcl 12011 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12011 . . . . 5 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 zcn 11980 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 11980 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 10933 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥𝑥 = -𝑦))
96, 7, 8syl2an 597 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥𝑥 = -𝑦))
105, 9reuhyp 5312 . . . 4 (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥)
11 breq2 5062 . . . . 5 (𝑦 = -𝑥 → (-𝐴𝑦 ↔ -𝐴 ≤ -𝑥))
12 breq1 5061 . . . . 5 (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1)))
1311, 12anbi12d 632 . . . 4 (𝑦 = -𝑥 → ((-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
144, 10, 13reuxfr1 3742 . . 3 (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))
15 zre 11979 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
16 leneg 11137 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1716ancoms 461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
18 peano2rem 10947 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
19 ltneg 11134 . . . . . . . . 9 (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
2018, 19sylan 582 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
21 1re 10635 . . . . . . . . 9 1 ∈ ℝ
22 ltsubadd 11104 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
2321, 22mp3an2 1445 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
24 recn 10621 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
25 ax-1cn 10589 . . . . . . . . . . 11 1 ∈ ℂ
26 negsubdi 10936 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
2724, 25, 26sylancl 588 . . . . . . . . . 10 (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1))
2827adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1))
2928breq2d 5070 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1)))
3020, 23, 293bitr3d 311 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1)))
3117, 30anbi12d 632 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3215, 31sylan2 594 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3332bicomd 225 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3433reubidva 3388 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
3514, 34syl5bb 285 . 2 (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
363, 35mpbid 234 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ∃!wreu 3140   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  -cneg 10865  cz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by:  flcl  13159  fllelt  13161  flflp1  13171  flbi  13180  ltflcei  34874
  Copyright terms: Public domain W3C validator