Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version GIF version |
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
rebtwnz | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 11385 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | zbtwnre 12787 | . . 3 ⊢ (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) |
4 | znegcl 12456 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | znegcl 12456 | . . . . 5 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
6 | zcn 12425 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 12425 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
8 | negcon2 11375 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) | |
9 | 6, 7, 8 | syl2an 596 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) |
10 | 5, 9 | reuhyp 5363 | . . . 4 ⊢ (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥) |
11 | breq2 5096 | . . . . 5 ⊢ (𝑦 = -𝑥 → (-𝐴 ≤ 𝑦 ↔ -𝐴 ≤ -𝑥)) | |
12 | breq1 5095 | . . . . 5 ⊢ (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1))) | |
13 | 11, 12 | anbi12d 631 | . . . 4 ⊢ (𝑦 = -𝑥 → ((-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
14 | 4, 10, 13 | reuxfr1 3698 | . . 3 ⊢ (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))) |
15 | zre 12424 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
16 | leneg 11579 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) | |
17 | 16 | ancoms 459 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
18 | peano2rem 11389 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
19 | ltneg 11576 | . . . . . . . . 9 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) | |
20 | 18, 19 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) |
21 | 1re 11076 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
22 | ltsubadd 11546 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) | |
23 | 21, 22 | mp3an2 1448 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) |
24 | recn 11062 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11030 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
26 | negsubdi 11378 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
27 | 24, 25, 26 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1)) |
28 | 27 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1)) |
29 | 28 | breq2d 5104 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1))) |
30 | 20, 23, 29 | 3bitr3d 308 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1))) |
31 | 17, 30 | anbi12d 631 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
32 | 15, 31 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
33 | 32 | bicomd 222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
34 | 33 | reubidva 3365 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
35 | 14, 34 | bitrid 282 | . 2 ⊢ (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
36 | 3, 35 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃!wreu 3347 class class class wbr 5092 (class class class)co 7337 ℂcc 10970 ℝcr 10971 1c1 10973 + caddc 10975 < clt 11110 ≤ cle 11111 − cmin 11306 -cneg 11307 ℤcz 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 |
This theorem is referenced by: flcl 13616 fllelt 13618 flflp1 13628 flbi 13637 ltflcei 35878 |
Copyright terms: Public domain | W3C validator |