MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Visualization version   GIF version

Theorem rebtwnz 12913
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11492 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zbtwnre 12912 . . 3 (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
4 znegcl 12575 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12575 . . . . 5 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 zcn 12541 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 12541 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 11482 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥𝑥 = -𝑦))
96, 7, 8syl2an 596 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥𝑥 = -𝑦))
105, 9reuhyp 5378 . . . 4 (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥)
11 breq2 5114 . . . . 5 (𝑦 = -𝑥 → (-𝐴𝑦 ↔ -𝐴 ≤ -𝑥))
12 breq1 5113 . . . . 5 (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1)))
1311, 12anbi12d 632 . . . 4 (𝑦 = -𝑥 → ((-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
144, 10, 13reuxfr1 3726 . . 3 (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))
15 zre 12540 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
16 leneg 11688 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1716ancoms 458 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
18 peano2rem 11496 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
19 ltneg 11685 . . . . . . . . 9 (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
2018, 19sylan 580 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
21 1re 11181 . . . . . . . . 9 1 ∈ ℝ
22 ltsubadd 11655 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
2321, 22mp3an2 1451 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
24 recn 11165 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
25 ax-1cn 11133 . . . . . . . . . . 11 1 ∈ ℂ
26 negsubdi 11485 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
2724, 25, 26sylancl 586 . . . . . . . . . 10 (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1))
2827adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1))
2928breq2d 5122 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1)))
3020, 23, 293bitr3d 309 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1)))
3117, 30anbi12d 632 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3215, 31sylan2 593 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3332bicomd 223 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3433reubidva 3372 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
3514, 34bitrid 283 . 2 (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
363, 35mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3354   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  -cneg 11413  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801
This theorem is referenced by:  flcl  13764  fllelt  13766  flflp1  13776  flbi  13785  ltflcei  37609
  Copyright terms: Public domain W3C validator