MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Visualization version   GIF version

Theorem rebtwnz 12938
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11530 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zbtwnre 12937 . . 3 (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
4 znegcl 12604 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12604 . . . . 5 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 zcn 12570 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 12570 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 11520 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥𝑥 = -𝑦))
96, 7, 8syl2an 595 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥𝑥 = -𝑦))
105, 9reuhyp 5418 . . . 4 (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥)
11 breq2 5152 . . . . 5 (𝑦 = -𝑥 → (-𝐴𝑦 ↔ -𝐴 ≤ -𝑥))
12 breq1 5151 . . . . 5 (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1)))
1311, 12anbi12d 630 . . . 4 (𝑦 = -𝑥 → ((-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
144, 10, 13reuxfr1 3748 . . 3 (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))
15 zre 12569 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
16 leneg 11724 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1716ancoms 458 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
18 peano2rem 11534 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
19 ltneg 11721 . . . . . . . . 9 (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
2018, 19sylan 579 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
21 1re 11221 . . . . . . . . 9 1 ∈ ℝ
22 ltsubadd 11691 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
2321, 22mp3an2 1448 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
24 recn 11206 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
25 ax-1cn 11174 . . . . . . . . . . 11 1 ∈ ℂ
26 negsubdi 11523 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
2724, 25, 26sylancl 585 . . . . . . . . . 10 (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1))
2827adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1))
2928breq2d 5160 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1)))
3020, 23, 293bitr3d 309 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1)))
3117, 30anbi12d 630 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3215, 31sylan2 592 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3332bicomd 222 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3433reubidva 3391 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
3514, 34bitrid 283 . 2 (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
363, 35mpbid 231 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  ∃!wreu 3373   class class class wbr 5148  (class class class)co 7412  cc 11114  cr 11115  1c1 11117   + caddc 11119   < clt 11255  cle 11256  cmin 11451  -cneg 11452  cz 12565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830
This theorem is referenced by:  flcl  13767  fllelt  13769  flflp1  13779  flbi  13788  ltflcei  36942
  Copyright terms: Public domain W3C validator