![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version GIF version |
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
rebtwnz | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 11519 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | zbtwnre 12926 | . . 3 ⊢ (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) |
4 | znegcl 12593 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | znegcl 12593 | . . . . 5 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
6 | zcn 12559 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 12559 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
8 | negcon2 11509 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) | |
9 | 6, 7, 8 | syl2an 596 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) |
10 | 5, 9 | reuhyp 5417 | . . . 4 ⊢ (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥) |
11 | breq2 5151 | . . . . 5 ⊢ (𝑦 = -𝑥 → (-𝐴 ≤ 𝑦 ↔ -𝐴 ≤ -𝑥)) | |
12 | breq1 5150 | . . . . 5 ⊢ (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1))) | |
13 | 11, 12 | anbi12d 631 | . . . 4 ⊢ (𝑦 = -𝑥 → ((-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
14 | 4, 10, 13 | reuxfr1 3747 | . . 3 ⊢ (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))) |
15 | zre 12558 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
16 | leneg 11713 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) | |
17 | 16 | ancoms 459 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
18 | peano2rem 11523 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
19 | ltneg 11710 | . . . . . . . . 9 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) | |
20 | 18, 19 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) |
21 | 1re 11210 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
22 | ltsubadd 11680 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) | |
23 | 21, 22 | mp3an2 1449 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) |
24 | recn 11196 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 11164 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
26 | negsubdi 11512 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
27 | 24, 25, 26 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1)) |
28 | 27 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1)) |
29 | 28 | breq2d 5159 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1))) |
30 | 20, 23, 29 | 3bitr3d 308 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1))) |
31 | 17, 30 | anbi12d 631 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
32 | 15, 31 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
33 | 32 | bicomd 222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
34 | 33 | reubidva 3392 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
35 | 14, 34 | bitrid 282 | . 2 ⊢ (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
36 | 3, 35 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃!wreu 3374 class class class wbr 5147 (class class class)co 7405 ℂcc 11104 ℝcr 11105 1c1 11107 + caddc 11109 < clt 11244 ≤ cle 11245 − cmin 11440 -cneg 11441 ℤcz 12554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: flcl 13756 fllelt 13758 flflp1 13768 flbi 13777 ltflcei 36464 |
Copyright terms: Public domain | W3C validator |