MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmax Structured version   Visualization version   GIF version

Theorem zmax 12348
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
zmax (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmax
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 10951 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zmin 12347 . . 3 (-𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
4 zre 11988 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
5 leneg 11145 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
64, 5sylan 582 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
76ancoms 461 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
8 znegcl 12020 . . . . . . . . . 10 (𝑤 ∈ ℤ → -𝑤 ∈ ℤ)
9 breq1 5071 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝐴 ↔ -𝑤𝐴))
10 breq1 5071 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝑥 ↔ -𝑤𝑥))
119, 10imbi12d 347 . . . . . . . . . . 11 (𝑦 = -𝑤 → ((𝑦𝐴𝑦𝑥) ↔ (-𝑤𝐴 → -𝑤𝑥)))
1211rspcv 3620 . . . . . . . . . 10 (-𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
138, 12syl 17 . . . . . . . . 9 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
14 zre 11988 . . . . . . . . . . . . 13 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
15 lenegcon1 11146 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤𝐴 ↔ -𝐴𝑤))
1615adantrr 715 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝐴 ↔ -𝐴𝑤))
17 lenegcon1 11146 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤𝑥 ↔ -𝑥𝑤))
184, 17sylan2 594 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤𝑥 ↔ -𝑥𝑤))
1918adantrl 714 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝑥 ↔ -𝑥𝑤))
2016, 19imbi12d 347 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
2114, 20sylan 582 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
2221biimpd 231 . . . . . . . . . . 11 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤)))
2322ex 415 . . . . . . . . . 10 (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤))))
2423com23 86 . . . . . . . . 9 (𝑤 ∈ ℤ → ((-𝑤𝐴 → -𝑤𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
2513, 24syld 47 . . . . . . . 8 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
2625com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (𝑤 ∈ ℤ → (-𝐴𝑤 → -𝑥𝑤))))
2726ralrimdv 3190 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
28 znegcl 12020 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
29 breq2 5072 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝐴𝑤 ↔ -𝐴 ≤ -𝑦))
30 breq2 5072 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝑥𝑤 ↔ -𝑥 ≤ -𝑦))
3129, 30imbi12d 347 . . . . . . . . . . 11 (𝑤 = -𝑦 → ((-𝐴𝑤 → -𝑥𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
3231rspcv 3620 . . . . . . . . . 10 (-𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
3328, 32syl 17 . . . . . . . . 9 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
34 zre 11988 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
35 leneg 11145 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
3635adantrr 715 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
37 leneg 11145 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
384, 37sylan2 594 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
3938adantrl 714 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
4036, 39imbi12d 347 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4134, 40sylan 582 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4241exbiri 809 . . . . . . . . . 10 (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦𝐴𝑦𝑥))))
4342com23 86 . . . . . . . . 9 (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
4433, 43syld 47 . . . . . . . 8 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
4544com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (𝑦 ∈ ℤ → (𝑦𝐴𝑦𝑥))))
4645ralrimdv 3190 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
4727, 46impbid 214 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
487, 47anbi12d 632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
4948reubidva 3390 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
50 znegcl 12020 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
51 znegcl 12020 . . . . 5 (𝑧 ∈ ℤ → -𝑧 ∈ ℤ)
52 zcn 11989 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
53 zcn 11989 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
54 negcon2 10941 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥𝑥 = -𝑧))
5552, 53, 54syl2an 597 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥𝑥 = -𝑧))
5651, 55reuhyp 5323 . . . 4 (𝑧 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑧 = -𝑥)
57 breq2 5072 . . . . 5 (𝑧 = -𝑥 → (-𝐴𝑧 ↔ -𝐴 ≤ -𝑥))
58 breq1 5071 . . . . . . 7 (𝑧 = -𝑥 → (𝑧𝑤 ↔ -𝑥𝑤))
5958imbi2d 343 . . . . . 6 (𝑧 = -𝑥 → ((-𝐴𝑤𝑧𝑤) ↔ (-𝐴𝑤 → -𝑥𝑤)))
6059ralbidv 3199 . . . . 5 (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6157, 60anbi12d 632 . . . 4 (𝑧 = -𝑥 → ((-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6250, 56, 61reuxfr1 3745 . . 3 (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6349, 62syl6rbbr 292 . 2 (𝐴 ∈ ℝ → (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥))))
643, 63mpbid 234 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  ∃!wreu 3142   class class class wbr 5068  cc 10537  cr 10538  cle 10678  -cneg 10873  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247
This theorem is referenced by:  flval2  13187
  Copyright terms: Public domain W3C validator