MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmax Structured version   Visualization version   GIF version

Theorem zmax 12904
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
zmax (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmax
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 11485 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zmin 12903 . . 3 (-𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
4 znegcl 12568 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12568 . . . . 5 (𝑧 ∈ ℤ → -𝑧 ∈ ℤ)
6 zcn 12534 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
7 zcn 12534 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 11475 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥𝑥 = -𝑧))
96, 7, 8syl2an 596 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥𝑥 = -𝑧))
105, 9reuhyp 5375 . . . 4 (𝑧 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑧 = -𝑥)
11 breq2 5111 . . . . 5 (𝑧 = -𝑥 → (-𝐴𝑧 ↔ -𝐴 ≤ -𝑥))
12 breq1 5110 . . . . . . 7 (𝑧 = -𝑥 → (𝑧𝑤 ↔ -𝑥𝑤))
1312imbi2d 340 . . . . . 6 (𝑧 = -𝑥 → ((-𝐴𝑤𝑧𝑤) ↔ (-𝐴𝑤 → -𝑥𝑤)))
1413ralbidv 3156 . . . . 5 (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
1511, 14anbi12d 632 . . . 4 (𝑧 = -𝑥 → ((-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
164, 10, 15reuxfr1 3723 . . 3 (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
17 zre 12533 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
18 leneg 11681 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1917, 18sylan 580 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
2019ancoms 458 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
21 znegcl 12568 . . . . . . . . . 10 (𝑤 ∈ ℤ → -𝑤 ∈ ℤ)
22 breq1 5110 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝐴 ↔ -𝑤𝐴))
23 breq1 5110 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝑥 ↔ -𝑤𝑥))
2422, 23imbi12d 344 . . . . . . . . . . 11 (𝑦 = -𝑤 → ((𝑦𝐴𝑦𝑥) ↔ (-𝑤𝐴 → -𝑤𝑥)))
2524rspcv 3584 . . . . . . . . . 10 (-𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
2621, 25syl 17 . . . . . . . . 9 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
27 zre 12533 . . . . . . . . . . . . 13 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
28 lenegcon1 11682 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤𝐴 ↔ -𝐴𝑤))
2928adantrr 717 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝐴 ↔ -𝐴𝑤))
30 lenegcon1 11682 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤𝑥 ↔ -𝑥𝑤))
3117, 30sylan2 593 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤𝑥 ↔ -𝑥𝑤))
3231adantrl 716 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝑥 ↔ -𝑥𝑤))
3329, 32imbi12d 344 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
3427, 33sylan 580 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
3534biimpd 229 . . . . . . . . . . 11 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤)))
3635ex 412 . . . . . . . . . 10 (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤))))
3736com23 86 . . . . . . . . 9 (𝑤 ∈ ℤ → ((-𝑤𝐴 → -𝑤𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
3826, 37syld 47 . . . . . . . 8 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
3938com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (𝑤 ∈ ℤ → (-𝐴𝑤 → -𝑥𝑤))))
4039ralrimdv 3131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
41 znegcl 12568 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
42 breq2 5111 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝐴𝑤 ↔ -𝐴 ≤ -𝑦))
43 breq2 5111 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝑥𝑤 ↔ -𝑥 ≤ -𝑦))
4442, 43imbi12d 344 . . . . . . . . . . 11 (𝑤 = -𝑦 → ((-𝐴𝑤 → -𝑥𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4544rspcv 3584 . . . . . . . . . 10 (-𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4641, 45syl 17 . . . . . . . . 9 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
47 zre 12533 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
48 leneg 11681 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
4948adantrr 717 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
50 leneg 11681 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5117, 50sylan2 593 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5251adantrl 716 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5349, 52imbi12d 344 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
5447, 53sylan 580 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
5554exbiri 810 . . . . . . . . . 10 (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦𝐴𝑦𝑥))))
5655com23 86 . . . . . . . . 9 (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
5746, 56syld 47 . . . . . . . 8 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
5857com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (𝑦 ∈ ℤ → (𝑦𝐴𝑦𝑥))))
5958ralrimdv 3131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
6040, 59impbid 212 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6120, 60anbi12d 632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6261reubidva 3370 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6316, 62bitr4id 290 . 2 (𝐴 ∈ ℝ → (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥))))
643, 63mpbid 232 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352   class class class wbr 5107  cc 11066  cr 11067  cle 11209  -cneg 11406  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  flval2  13776
  Copyright terms: Public domain W3C validator