Step | Hyp | Ref
| Expression |
1 | | renegcl 11284 |
. . 3
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
2 | | zmin 12684 |
. . 3
⊢ (-𝐴 ∈ ℝ →
∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ∈ ℝ →
∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
4 | | znegcl 12355 |
. . . 4
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
5 | | znegcl 12355 |
. . . . 5
⊢ (𝑧 ∈ ℤ → -𝑧 ∈
ℤ) |
6 | | zcn 12324 |
. . . . . 6
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
7 | | zcn 12324 |
. . . . . 6
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
8 | | negcon2 11274 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥 ↔ 𝑥 = -𝑧)) |
9 | 6, 7, 8 | syl2an 596 |
. . . . 5
⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥 ↔ 𝑥 = -𝑧)) |
10 | 5, 9 | reuhyp 5343 |
. . . 4
⊢ (𝑧 ∈ ℤ →
∃!𝑥 ∈ ℤ
𝑧 = -𝑥) |
11 | | breq2 5078 |
. . . . 5
⊢ (𝑧 = -𝑥 → (-𝐴 ≤ 𝑧 ↔ -𝐴 ≤ -𝑥)) |
12 | | breq1 5077 |
. . . . . . 7
⊢ (𝑧 = -𝑥 → (𝑧 ≤ 𝑤 ↔ -𝑥 ≤ 𝑤)) |
13 | 12 | imbi2d 341 |
. . . . . 6
⊢ (𝑧 = -𝑥 → ((-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
14 | 13 | ralbidv 3112 |
. . . . 5
⊢ (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
15 | 11, 14 | anbi12d 631 |
. . . 4
⊢ (𝑧 = -𝑥 → ((-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
16 | 4, 10, 15 | reuxfr1 3687 |
. . 3
⊢
(∃!𝑧 ∈
ℤ (-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
17 | | zre 12323 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℝ) |
18 | | leneg 11478 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
19 | 17, 18 | sylan 580 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
20 | 19 | ancoms 459 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
21 | | znegcl 12355 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℤ → -𝑤 ∈
ℤ) |
22 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑤 → (𝑦 ≤ 𝐴 ↔ -𝑤 ≤ 𝐴)) |
23 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑤 → (𝑦 ≤ 𝑥 ↔ -𝑤 ≤ 𝑥)) |
24 | 22, 23 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑤 → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
25 | 24 | rspcv 3557 |
. . . . . . . . . 10
⊢ (-𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
26 | 21, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
27 | | zre 12323 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℤ → 𝑤 ∈
ℝ) |
28 | | lenegcon1 11479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤 ≤ 𝐴 ↔ -𝐴 ≤ 𝑤)) |
29 | 28 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤 ≤ 𝐴 ↔ -𝐴 ≤ 𝑤)) |
30 | | lenegcon1 11479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
31 | 17, 30 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
32 | 31 | adantrl 713 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
33 | 29, 32 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
34 | 27, 33 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
35 | 34 | biimpd 228 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
36 | 35 | ex 413 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
37 | 36 | com23 86 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℤ → ((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
38 | 26, 37 | syld 47 |
. . . . . . . 8
⊢ (𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
39 | 38 | com13 88 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (𝑤 ∈ ℤ → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
40 | 39 | ralrimdv 3105 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
41 | | znegcl 12355 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
42 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑤 = -𝑦 → (-𝐴 ≤ 𝑤 ↔ -𝐴 ≤ -𝑦)) |
43 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑤 = -𝑦 → (-𝑥 ≤ 𝑤 ↔ -𝑥 ≤ -𝑦)) |
44 | 42, 43 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑤 = -𝑦 → ((-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
45 | 44 | rspcv 3557 |
. . . . . . . . . 10
⊢ (-𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
46 | 41, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
47 | | zre 12323 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
48 | | leneg 11478 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦 ≤ 𝐴 ↔ -𝐴 ≤ -𝑦)) |
49 | 48 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦 ≤ 𝐴 ↔ -𝐴 ≤ -𝑦)) |
50 | | leneg 11478 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
51 | 17, 50 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
52 | 51 | adantrl 713 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
53 | 49, 52 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
54 | 47, 53 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
55 | 54 | exbiri 808 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
56 | 55 | com23 86 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
57 | 46, 56 | syld 47 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
58 | 57 | com13 88 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (𝑦 ∈ ℤ → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
59 | 58 | ralrimdv 3105 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) |
60 | 40, 59 | impbid 211 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
61 | 20, 60 | anbi12d 631 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
62 | 61 | reubidva 3322 |
. . 3
⊢ (𝐴 ∈ ℝ →
(∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
63 | 16, 62 | bitr4id 290 |
. 2
⊢ (𝐴 ∈ ℝ →
(∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
64 | 3, 63 | mpbid 231 |
1
⊢ (𝐴 ∈ ℝ →
∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) |