Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
Ref | Expression |
---|---|
riotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaneg | ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1542 | . 2 ⊢ ⊤ | |
2 | nfriota1 7121 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℝ 𝜓) | |
3 | 2 | nfneg 10933 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℝ 𝜓) |
4 | renegcl 11000 | . . . 4 ⊢ (𝑦 ∈ ℝ → -𝑦 ∈ ℝ) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
6 | simpr 488 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) | |
7 | 6 | renegcld 11118 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) |
8 | riotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 10929 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℝ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℝ 𝜓)) | |
10 | renegcl 11000 | . . . . 5 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
11 | recn 10678 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
12 | recn 10678 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
13 | negcon2 10990 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 598 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5293 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
16 | 15 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7148 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
18 | 1, 17 | mpan 689 | 1 ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ∃!wreu 3072 ℩crio 7113 ℂcc 10586 ℝcr 10587 -cneg 10922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-ltxr 10731 df-sub 10923 df-neg 10924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |