| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaneg | Structured version Visualization version GIF version | ||
| Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
| Ref | Expression |
|---|---|
| riotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotaneg | ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | nfriota1 7369 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℝ 𝜓) | |
| 3 | 2 | nfneg 11478 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℝ 𝜓) |
| 4 | renegcl 11546 | . . . 4 ⊢ (𝑦 ∈ ℝ → -𝑦 ∈ ℝ) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
| 6 | simpr 484 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) | |
| 7 | 6 | renegcld 11664 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) |
| 8 | riotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | negeq 11474 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℝ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℝ 𝜓)) | |
| 10 | renegcl 11546 | . . . . 5 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
| 11 | recn 11219 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 12 | recn 11219 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 13 | negcon2 11536 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 15 | 10, 14 | reuhyp 5390 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
| 17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7396 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
| 18 | 1, 17 | mpan 690 | 1 ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∃!wreu 3357 ℩crio 7361 ℂcc 11127 ℝcr 11128 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |