![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
Ref | Expression |
---|---|
riotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaneg | ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . 2 ⊢ ⊤ | |
2 | nfriota1 7411 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℝ 𝜓) | |
3 | 2 | nfneg 11532 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℝ 𝜓) |
4 | renegcl 11599 | . . . 4 ⊢ (𝑦 ∈ ℝ → -𝑦 ∈ ℝ) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
6 | simpr 484 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) | |
7 | 6 | renegcld 11717 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) |
8 | riotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 11528 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℝ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℝ 𝜓)) | |
10 | renegcl 11599 | . . . . 5 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
11 | recn 11274 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
12 | recn 11274 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
13 | negcon2 11589 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 595 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5438 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
16 | 15 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7439 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
18 | 1, 17 | mpan 689 | 1 ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∃!wreu 3386 ℩crio 7403 ℂcc 11182 ℝcr 11183 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |