Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaneg | Structured version Visualization version GIF version |
Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
Ref | Expression |
---|---|
riotaneg.1 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaneg | ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | nfriota1 7271 | . . . 4 ⊢ Ⅎ𝑦(℩𝑦 ∈ ℝ 𝜓) | |
3 | 2 | nfneg 11263 | . . 3 ⊢ Ⅎ𝑦-(℩𝑦 ∈ ℝ 𝜓) |
4 | renegcl 11330 | . . . 4 ⊢ (𝑦 ∈ ℝ → -𝑦 ∈ ℝ) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
6 | simpr 486 | . . . 4 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) | |
7 | 6 | renegcld 11448 | . . 3 ⊢ ((⊤ ∧ (℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(℩𝑦 ∈ ℝ 𝜓) ∈ ℝ) |
8 | riotaneg.1 | . . 3 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) | |
9 | negeq 11259 | . . 3 ⊢ (𝑦 = (℩𝑦 ∈ ℝ 𝜓) → -𝑦 = -(℩𝑦 ∈ ℝ 𝜓)) | |
10 | renegcl 11330 | . . . . 5 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
11 | recn 11007 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
12 | recn 11007 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
13 | negcon2 11320 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
14 | 11, 12, 13 | syl2an 597 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
15 | 10, 14 | reuhyp 5352 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
16 | 15 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦) |
17 | 3, 5, 7, 8, 9, 16 | riotaxfrd 7299 | . 2 ⊢ ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
18 | 1, 17 | mpan 688 | 1 ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 ∃!wreu 3282 ℩crio 7263 ℂcc 10915 ℝcr 10916 -cneg 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 df-sub 11253 df-neg 11254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |