MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfr1ds Structured version   Visualization version   GIF version

Theorem reuxfr1ds 3756
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhypd 5418 to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuxfr1ds.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
reuxfr1ds.2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
reuxfr1ds.3 (𝑥 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
reuxfr1ds (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem reuxfr1ds
StepHypRef Expression
1 reuxfr1ds.1 . 2 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 reuxfr1ds.2 . 2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
3 reuxfr1ds.3 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
43adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
51, 2, 4reuxfr1d 3755 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  ∃!wreu 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380
This theorem is referenced by:  reuxfr1  3757  riotaxfrd  7423  ply1divalg3  35648  r1peuqusdeg1  35649
  Copyright terms: Public domain W3C validator