![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgfix2 | Structured version Visualization version GIF version |
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
Ref | Expression |
---|---|
symgfix2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
symgfix2 | ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . . 3 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) | |
2 | ianor 981 | . . . . 5 ⊢ (¬ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) | |
3 | fveq1 6891 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) | |
4 | 3 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
5 | 4 | elrab 3684 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
6 | 2, 5 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
7 | 6 | anbi2i 624 | . . 3 ⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
9 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) | |
10 | symgfix2.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | 10 | symgmov2 19255 | . . . . . 6 ⊢ (𝑄 ∈ 𝑃 → ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) |
12 | eqeq2 2745 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝐿 → ((𝑄‘𝑘) = 𝑙 ↔ (𝑄‘𝑘) = 𝐿)) | |
13 | 12 | rexbidv 3179 | . . . . . . . . . 10 ⊢ (𝑙 = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 ↔ ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿)) |
14 | 13 | rspcva 3611 | . . . . . . . . 9 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿) |
15 | eqeq2 2745 | . . . . . . . . . . . . . . . 16 ⊢ (𝐿 = (𝑄‘𝑘) → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) | |
16 | 15 | eqcoms 2741 | . . . . . . . . . . . . . . 15 ⊢ ((𝑄‘𝑘) = 𝐿 → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) |
17 | 16 | notbid 318 | . . . . . . . . . . . . . 14 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 ↔ ¬ (𝑄‘𝐾) = (𝑄‘𝑘))) |
18 | fveq2 6892 | . . . . . . . . . . . . . . . 16 ⊢ (𝐾 = 𝑘 → (𝑄‘𝐾) = (𝑄‘𝑘)) | |
19 | 18 | eqcoms 2741 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝐾 → (𝑄‘𝐾) = (𝑄‘𝑘)) |
20 | 19 | necon3bi 2968 | . . . . . . . . . . . . . 14 ⊢ (¬ (𝑄‘𝐾) = (𝑄‘𝑘) → 𝑘 ≠ 𝐾) |
21 | 17, 20 | syl6bi 253 | . . . . . . . . . . . . 13 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 → 𝑘 ≠ 𝐾)) |
22 | 21 | com12 32 | . . . . . . . . . . . 12 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 → 𝑘 ≠ 𝐾)) |
23 | 22 | pm4.71rd 564 | . . . . . . . . . . 11 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
24 | 23 | rexbidv 3179 | . . . . . . . . . 10 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
25 | rexdifsn 4798 | . . . . . . . . . 10 ⊢ (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿)) | |
26 | 24, 25 | bitr4di 289 | . . . . . . . . 9 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
27 | 14, 26 | syl5ibcom 244 | . . . . . . . 8 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
28 | 27 | ex 414 | . . . . . . 7 ⊢ (𝐿 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
29 | 28 | com13 88 | . . . . . 6 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
30 | 11, 29 | syl5 34 | . . . . 5 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
31 | 9, 30 | jaoi 856 | . . . 4 ⊢ ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
32 | 31 | com13 88 | . . 3 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ 𝑃 → ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
33 | 32 | impd 412 | . 2 ⊢ (𝐿 ∈ 𝑁 → ((𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
34 | 8, 33 | biimtrid 241 | 1 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ∖ cdif 3946 {csn 4629 ‘cfv 6544 Basecbs 17144 SymGrpcsymg 19234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-tset 17216 df-efmnd 18750 df-symg 19235 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |