![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgfix2 | Structured version Visualization version GIF version |
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
Ref | Expression |
---|---|
symgfix2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
symgfix2 | ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3953 | . . 3 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) | |
2 | ianor 978 | . . . . 5 ⊢ (¬ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) | |
3 | fveq1 6884 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) | |
4 | 3 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
5 | 4 | elrab 3678 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
6 | 2, 5 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
7 | 6 | anbi2i 622 | . . 3 ⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
9 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) | |
10 | symgfix2.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | 10 | symgmov2 19307 | . . . . . 6 ⊢ (𝑄 ∈ 𝑃 → ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) |
12 | eqeq2 2738 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝐿 → ((𝑄‘𝑘) = 𝑙 ↔ (𝑄‘𝑘) = 𝐿)) | |
13 | 12 | rexbidv 3172 | . . . . . . . . . 10 ⊢ (𝑙 = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 ↔ ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿)) |
14 | 13 | rspcva 3604 | . . . . . . . . 9 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿) |
15 | eqeq2 2738 | . . . . . . . . . . . . . . . 16 ⊢ (𝐿 = (𝑄‘𝑘) → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) | |
16 | 15 | eqcoms 2734 | . . . . . . . . . . . . . . 15 ⊢ ((𝑄‘𝑘) = 𝐿 → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) |
17 | 16 | notbid 318 | . . . . . . . . . . . . . 14 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 ↔ ¬ (𝑄‘𝐾) = (𝑄‘𝑘))) |
18 | fveq2 6885 | . . . . . . . . . . . . . . . 16 ⊢ (𝐾 = 𝑘 → (𝑄‘𝐾) = (𝑄‘𝑘)) | |
19 | 18 | eqcoms 2734 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝐾 → (𝑄‘𝐾) = (𝑄‘𝑘)) |
20 | 19 | necon3bi 2961 | . . . . . . . . . . . . . 14 ⊢ (¬ (𝑄‘𝐾) = (𝑄‘𝑘) → 𝑘 ≠ 𝐾) |
21 | 17, 20 | biimtrdi 252 | . . . . . . . . . . . . 13 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 → 𝑘 ≠ 𝐾)) |
22 | 21 | com12 32 | . . . . . . . . . . . 12 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 → 𝑘 ≠ 𝐾)) |
23 | 22 | pm4.71rd 562 | . . . . . . . . . . 11 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
24 | 23 | rexbidv 3172 | . . . . . . . . . 10 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
25 | rexdifsn 4792 | . . . . . . . . . 10 ⊢ (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿)) | |
26 | 24, 25 | bitr4di 289 | . . . . . . . . 9 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
27 | 14, 26 | syl5ibcom 244 | . . . . . . . 8 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
28 | 27 | ex 412 | . . . . . . 7 ⊢ (𝐿 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
29 | 28 | com13 88 | . . . . . 6 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
30 | 11, 29 | syl5 34 | . . . . 5 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
31 | 9, 30 | jaoi 854 | . . . 4 ⊢ ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
32 | 31 | com13 88 | . . 3 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ 𝑃 → ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
33 | 32 | impd 410 | . 2 ⊢ (𝐿 ∈ 𝑁 → ((𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
34 | 8, 33 | biimtrid 241 | 1 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 ∖ cdif 3940 {csn 4623 ‘cfv 6537 Basecbs 17153 SymGrpcsymg 19286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-tset 17225 df-efmnd 18794 df-symg 19287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |