Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgfix2 | Structured version Visualization version GIF version |
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
Ref | Expression |
---|---|
symgfix2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
symgfix2 | ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3898 | . . 3 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) | |
2 | ianor 978 | . . . . 5 ⊢ (¬ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) | |
3 | fveq1 6760 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) | |
4 | 3 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
5 | 4 | elrab 3622 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
6 | 2, 5 | xchnxbir 332 | . . . 4 ⊢ (¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
7 | 6 | anbi2i 622 | . . 3 ⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
8 | 1, 7 | bitri 274 | . 2 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
9 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) | |
10 | symgfix2.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | 10 | symgmov2 18939 | . . . . . 6 ⊢ (𝑄 ∈ 𝑃 → ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) |
12 | eqeq2 2749 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝐿 → ((𝑄‘𝑘) = 𝑙 ↔ (𝑄‘𝑘) = 𝐿)) | |
13 | 12 | rexbidv 3224 | . . . . . . . . . 10 ⊢ (𝑙 = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 ↔ ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿)) |
14 | 13 | rspcva 3555 | . . . . . . . . 9 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿) |
15 | eqeq2 2749 | . . . . . . . . . . . . . . . 16 ⊢ (𝐿 = (𝑄‘𝑘) → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) | |
16 | 15 | eqcoms 2745 | . . . . . . . . . . . . . . 15 ⊢ ((𝑄‘𝑘) = 𝐿 → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) |
17 | 16 | notbid 317 | . . . . . . . . . . . . . 14 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 ↔ ¬ (𝑄‘𝐾) = (𝑄‘𝑘))) |
18 | fveq2 6761 | . . . . . . . . . . . . . . . 16 ⊢ (𝐾 = 𝑘 → (𝑄‘𝐾) = (𝑄‘𝑘)) | |
19 | 18 | eqcoms 2745 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝐾 → (𝑄‘𝐾) = (𝑄‘𝑘)) |
20 | 19 | necon3bi 2968 | . . . . . . . . . . . . . 14 ⊢ (¬ (𝑄‘𝐾) = (𝑄‘𝑘) → 𝑘 ≠ 𝐾) |
21 | 17, 20 | syl6bi 252 | . . . . . . . . . . . . 13 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 → 𝑘 ≠ 𝐾)) |
22 | 21 | com12 32 | . . . . . . . . . . . 12 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 → 𝑘 ≠ 𝐾)) |
23 | 22 | pm4.71rd 562 | . . . . . . . . . . 11 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
24 | 23 | rexbidv 3224 | . . . . . . . . . 10 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
25 | rexdifsn 4729 | . . . . . . . . . 10 ⊢ (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿)) | |
26 | 24, 25 | bitr4di 288 | . . . . . . . . 9 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
27 | 14, 26 | syl5ibcom 244 | . . . . . . . 8 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
28 | 27 | ex 412 | . . . . . . 7 ⊢ (𝐿 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
29 | 28 | com13 88 | . . . . . 6 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
30 | 11, 29 | syl5 34 | . . . . 5 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
31 | 9, 30 | jaoi 853 | . . . 4 ⊢ ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
32 | 31 | com13 88 | . . 3 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ 𝑃 → ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
33 | 32 | impd 410 | . 2 ⊢ (𝐿 ∈ 𝑁 → ((𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
34 | 8, 33 | syl5bi 241 | 1 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3063 {crab 3066 ∖ cdif 3885 {csn 4563 ‘cfv 6423 Basecbs 16856 SymGrpcsymg 18918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-map 8580 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-7 11987 df-8 11988 df-9 11989 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 df-struct 16792 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-tset 16925 df-efmnd 18452 df-symg 18919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |