![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgfix2 | Structured version Visualization version GIF version |
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
Ref | Expression |
---|---|
symgfix2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
symgfix2 | ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . 3 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) | |
2 | ianor 982 | . . . . 5 ⊢ (¬ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) | |
3 | fveq1 6919 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) | |
4 | 3 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
5 | 4 | elrab 3708 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
6 | 2, 5 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
7 | 6 | anbi2i 622 | . . 3 ⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿))) |
9 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) | |
10 | symgfix2.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
11 | 10 | symgmov2 19429 | . . . . . 6 ⊢ (𝑄 ∈ 𝑃 → ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) |
12 | eqeq2 2752 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝐿 → ((𝑄‘𝑘) = 𝑙 ↔ (𝑄‘𝑘) = 𝐿)) | |
13 | 12 | rexbidv 3185 | . . . . . . . . . 10 ⊢ (𝑙 = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 ↔ ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿)) |
14 | 13 | rspcva 3633 | . . . . . . . . 9 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿) |
15 | eqeq2 2752 | . . . . . . . . . . . . . . . 16 ⊢ (𝐿 = (𝑄‘𝑘) → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) | |
16 | 15 | eqcoms 2748 | . . . . . . . . . . . . . . 15 ⊢ ((𝑄‘𝑘) = 𝐿 → ((𝑄‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = (𝑄‘𝑘))) |
17 | 16 | notbid 318 | . . . . . . . . . . . . . 14 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 ↔ ¬ (𝑄‘𝐾) = (𝑄‘𝑘))) |
18 | fveq2 6920 | . . . . . . . . . . . . . . . 16 ⊢ (𝐾 = 𝑘 → (𝑄‘𝐾) = (𝑄‘𝑘)) | |
19 | 18 | eqcoms 2748 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 = 𝐾 → (𝑄‘𝐾) = (𝑄‘𝑘)) |
20 | 19 | necon3bi 2973 | . . . . . . . . . . . . . 14 ⊢ (¬ (𝑄‘𝐾) = (𝑄‘𝑘) → 𝑘 ≠ 𝐾) |
21 | 17, 20 | biimtrdi 253 | . . . . . . . . . . . . 13 ⊢ ((𝑄‘𝑘) = 𝐿 → (¬ (𝑄‘𝐾) = 𝐿 → 𝑘 ≠ 𝐾)) |
22 | 21 | com12 32 | . . . . . . . . . . . 12 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 → 𝑘 ≠ 𝐾)) |
23 | 22 | pm4.71rd 562 | . . . . . . . . . . 11 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
24 | 23 | rexbidv 3185 | . . . . . . . . . 10 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿))) |
25 | rexdifsn 4819 | . . . . . . . . . 10 ⊢ (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ 𝑁 (𝑘 ≠ 𝐾 ∧ (𝑄‘𝑘) = 𝐿)) | |
26 | 24, 25 | bitr4di 289 | . . . . . . . . 9 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
27 | 14, 26 | syl5ibcom 245 | . . . . . . . 8 ⊢ ((𝐿 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙) → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
28 | 27 | ex 412 | . . . . . . 7 ⊢ (𝐿 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (¬ (𝑄‘𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
29 | 28 | com13 88 | . . . . . 6 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (∀𝑙 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑙 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
30 | 11, 29 | syl5 34 | . . . . 5 ⊢ (¬ (𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
31 | 9, 30 | jaoi 856 | . . . 4 ⊢ ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → (𝐿 ∈ 𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
32 | 31 | com13 88 | . . 3 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ 𝑃 → ((¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿))) |
33 | 32 | impd 410 | . 2 ⊢ (𝐿 ∈ 𝑁 → ((𝑄 ∈ 𝑃 ∧ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
34 | 8, 33 | biimtrid 242 | 1 ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∖ cdif 3973 {csn 4648 ‘cfv 6573 Basecbs 17258 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-tset 17330 df-efmnd 18904 df-symg 19411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |