MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfix2 Structured version   Visualization version   GIF version

Theorem symgfix2 19434
Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.)
Hypothesis
Ref Expression
symgfix2.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
symgfix2 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑘,𝐾,𝑞   𝑘,𝐿,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑃(𝑘)   𝑁(𝑞)

Proof of Theorem symgfix2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eldif 3961 . . 3 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}))
2 ianor 984 . . . . 5 (¬ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
3 fveq1 6905 . . . . . . 7 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
43eqeq1d 2739 . . . . . 6 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
54elrab 3692 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
62, 5xchnxbir 333 . . . 4 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
76anbi2i 623 . . 3 ((𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
81, 7bitri 275 . 2 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)))
9 pm2.21 123 . . . . 5 𝑄𝑃 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
10 symgfix2.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
1110symgmov2 19405 . . . . . 6 (𝑄𝑃 → ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙)
12 eqeq2 2749 . . . . . . . . . . 11 (𝑙 = 𝐿 → ((𝑄𝑘) = 𝑙 ↔ (𝑄𝑘) = 𝐿))
1312rexbidv 3179 . . . . . . . . . 10 (𝑙 = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝑙 ↔ ∃𝑘𝑁 (𝑄𝑘) = 𝐿))
1413rspcva 3620 . . . . . . . . 9 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → ∃𝑘𝑁 (𝑄𝑘) = 𝐿)
15 eqeq2 2749 . . . . . . . . . . . . . . . 16 (𝐿 = (𝑄𝑘) → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1615eqcoms 2745 . . . . . . . . . . . . . . 15 ((𝑄𝑘) = 𝐿 → ((𝑄𝐾) = 𝐿 ↔ (𝑄𝐾) = (𝑄𝑘)))
1716notbid 318 . . . . . . . . . . . . . 14 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿 ↔ ¬ (𝑄𝐾) = (𝑄𝑘)))
18 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝐾 = 𝑘 → (𝑄𝐾) = (𝑄𝑘))
1918eqcoms 2745 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑄𝐾) = (𝑄𝑘))
2019necon3bi 2967 . . . . . . . . . . . . . 14 (¬ (𝑄𝐾) = (𝑄𝑘) → 𝑘𝐾)
2117, 20biimtrdi 253 . . . . . . . . . . . . 13 ((𝑄𝑘) = 𝐿 → (¬ (𝑄𝐾) = 𝐿𝑘𝐾))
2221com12 32 . . . . . . . . . . . 12 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿𝑘𝐾))
2322pm4.71rd 562 . . . . . . . . . . 11 (¬ (𝑄𝐾) = 𝐿 → ((𝑄𝑘) = 𝐿 ↔ (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
2423rexbidv 3179 . . . . . . . . . 10 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿)))
25 rexdifsn 4794 . . . . . . . . . 10 (∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿 ↔ ∃𝑘𝑁 (𝑘𝐾 ∧ (𝑄𝑘) = 𝐿))
2624, 25bitr4di 289 . . . . . . . . 9 (¬ (𝑄𝐾) = 𝐿 → (∃𝑘𝑁 (𝑄𝑘) = 𝐿 ↔ ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2714, 26syl5ibcom 245 . . . . . . . 8 ((𝐿𝑁 ∧ ∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙) → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
2827ex 412 . . . . . . 7 (𝐿𝑁 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (¬ (𝑄𝐾) = 𝐿 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
2928com13 88 . . . . . 6 (¬ (𝑄𝐾) = 𝐿 → (∀𝑙𝑁𝑘𝑁 (𝑄𝑘) = 𝑙 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3011, 29syl5 34 . . . . 5 (¬ (𝑄𝐾) = 𝐿 → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
319, 30jaoi 858 . . . 4 ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → (𝑄𝑃 → (𝐿𝑁 → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3231com13 88 . . 3 (𝐿𝑁 → (𝑄𝑃 → ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿)))
3332impd 410 . 2 (𝐿𝑁 → ((𝑄𝑃 ∧ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿)) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
348, 33biimtrid 242 1 (𝐿𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄𝑘) = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  {csn 4626  cfv 6561  Basecbs 17247  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator