Step | Hyp | Ref
| Expression |
1 | | dihatexv.k |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄 ∈ 𝐴) |
4 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊) |
5 | | dihatexv.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
6 | | eqid 2740 |
. . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) |
7 | | dihatexv.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | dihatexv.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | eqid 2740 |
. . . . . . . . 9
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
10 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) |
11 | | dihatexv.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
12 | | dihatexv.i |
. . . . . . . . 9
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
13 | | dihatexv.n |
. . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑈) |
14 | 5, 6, 7, 8, 9, 10,
11, 12, 13 | dih1dimb2 39249 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉}))) |
15 | 2, 3, 4, 14 | syl12anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉}))) |
16 | 1 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) |
18 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
19 | 5, 8, 9, 18, 10 | tendo0cl 38798 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) |
20 | 16, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) |
21 | | dihatexv.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Base‘𝑈) |
22 | 8, 9, 18, 11, 21 | dvhelvbasei 39096 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉 ∈ 𝑉) |
23 | 16, 17, 20, 22 | syl12anc 834 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉 ∈ 𝑉) |
24 | | sneq 4577 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉 → {𝑥} = {〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉}) |
25 | 24 | fveq2d 6773 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉 → (𝑁‘{𝑥}) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉})) |
26 | 25 | rspceeqv 3576 |
. . . . . . . . . . 11
⊢
((〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉 ∈ 𝑉 ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉})) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
27 | 23, 26 | sylan 580 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉})) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
28 | 27 | ex 413 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉}) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
29 | 28 | adantld 491 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉})) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
30 | 29 | rexlimdva 3215 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼‘𝑄) = (𝑁‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))〉})) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
31 | 15, 30 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
32 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
33 | | eqid 2740 |
. . . . . . . . . . 11
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
34 | 6, 7, 8, 33 | lhpocnel2 38027 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
35 | 32, 34 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
36 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄 ∈ 𝐴) |
37 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊) |
38 | | eqid 2740 |
. . . . . . . . . 10
⊢
(℩𝑓
∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) |
39 | 6, 7, 8, 9, 38 | ltrniotacl 38587 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
40 | 32, 35, 36, 37, 39 | syl112anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
41 | 8, 9, 18 | tendoidcl 38777 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊)) |
42 | 32, 41 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊)) |
43 | 8, 9, 18, 11, 21 | dvhelvbasei 39096 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ 𝑉) |
44 | 32, 40, 42, 43 | syl12anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ 𝑉) |
45 | 6, 7, 8, 33, 9, 12, 11, 13, 38 | dih1dimc 39250 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼‘𝑄) = (𝑁‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) |
46 | 32, 36, 37, 45 | syl12anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼‘𝑄) = (𝑁‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) |
47 | | sneq 4577 |
. . . . . . . . 9
⊢ (𝑥 = 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 → {𝑥} = {〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉}) |
48 | 47 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑥 = 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 → (𝑁‘{𝑥}) = (𝑁‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) |
49 | 48 | rspceeqv 3576 |
. . . . . . 7
⊢
((〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ 𝑉 ∧ (𝐼‘𝑄) = (𝑁‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
50 | 44, 46, 49 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
51 | 31, 50 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥})) |
52 | 1 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ HL) |
53 | 52 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL) |
54 | | hlatl 37368 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
55 | 53, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat) |
56 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝑄 ∈ 𝐴) |
57 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(0.‘𝐾) =
(0.‘𝐾) |
58 | 57, 7 | atn0 37316 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → 𝑄 ≠ (0.‘𝐾)) |
59 | 55, 56, 58 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾)) |
60 | | sneq 4577 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → {𝑥} = { 0 }) |
61 | 60 | fveq2d 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 })) |
62 | 61 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 })) |
63 | | simp1ll 1235 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑) |
64 | 8, 11, 1 | dvhlmod 39118 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ∈ LMod) |
65 | | dihatexv.o |
. . . . . . . . . . . . . . . 16
⊢ 0 =
(0g‘𝑈) |
66 | 65, 13 | lspsn0 20266 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
67 | 63, 64, 66 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 }) |
68 | 62, 67 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 }) |
69 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘𝑄) = (𝑁‘{𝑥})) |
70 | 57, 8, 12, 11, 65 | dih0 39288 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) |
71 | 63, 1, 70 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 }) |
72 | 68, 69, 71 | 3eqtr4d 2790 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘𝑄) = (𝐼‘(0.‘𝐾))) |
73 | 63, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
74 | | dihatexv.q |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
75 | 63, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 ∈ 𝐵) |
76 | 63, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL) |
77 | | hlop 37370 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
78 | 5, 57 | op0cl 37192 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈ 𝐵) |
79 | 76, 77, 78 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵) |
80 | 5, 8, 12 | dih11 39273 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼‘𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾))) |
81 | 73, 75, 79, 80 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼‘𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾))) |
82 | 72, 81 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾)) |
83 | 82 | 3expia 1120 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0 → 𝑄 = (0.‘𝐾))) |
84 | 83 | necon3d 2966 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥 ≠ 0 )) |
85 | 59, 84 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝑥 ≠ 0 ) |
86 | 85 | ex 413 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) → ((𝐼‘𝑄) = (𝑁‘{𝑥}) → 𝑥 ≠ 0 )) |
87 | 86 | ancrd 552 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑄 ∈ 𝐴) ∧ 𝑥 ∈ 𝑉) → ((𝐼‘𝑄) = (𝑁‘{𝑥}) → (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})))) |
88 | 87 | reximdva 3205 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (∃𝑥 ∈ 𝑉 (𝐼‘𝑄) = (𝑁‘{𝑥}) → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})))) |
89 | 51, 88 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
90 | 89 | ex 413 |
. . 3
⊢ (𝜑 → (𝑄 ∈ 𝐴 → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})))) |
91 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
92 | 74 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑄 ∈ 𝐵) |
93 | 5, 8, 12 | dihcnvid1 39280 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐵) → (◡𝐼‘(𝐼‘𝑄)) = 𝑄) |
94 | 91, 92, 93 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → (◡𝐼‘(𝐼‘𝑄)) = 𝑄) |
95 | | fveq2 6769 |
. . . . . . . 8
⊢ ((𝐼‘𝑄) = (𝑁‘{𝑥}) → (◡𝐼‘(𝐼‘𝑄)) = (◡𝐼‘(𝑁‘{𝑥}))) |
96 | 95 | ad2antll 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → (◡𝐼‘(𝐼‘𝑄)) = (◡𝐼‘(𝑁‘{𝑥}))) |
97 | 94, 96 | eqtr3d 2782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (◡𝐼‘(𝑁‘{𝑥}))) |
98 | 64 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod) |
99 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑥 ∈ 𝑉) |
100 | | simprl 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑥 ≠ 0 ) |
101 | | eqid 2740 |
. . . . . . . . 9
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
102 | 21, 13, 65, 101 | lsatlspsn2 37000 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) |
103 | 98, 99, 100, 102 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) |
104 | 7, 8, 11, 12, 101 | dihlatat 39345 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (◡𝐼‘(𝑁‘{𝑥})) ∈ 𝐴) |
105 | 91, 103, 104 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → (◡𝐼‘(𝑁‘{𝑥})) ∈ 𝐴) |
106 | 97, 105 | eqeltrd 2841 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) → 𝑄 ∈ 𝐴) |
107 | 106 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝑄 ∈ 𝐴)) |
108 | 107 | rexlimdva 3215 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})) → 𝑄 ∈ 𝐴)) |
109 | 90, 108 | impbid 211 |
. 2
⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥})))) |
110 | | rexdifsn 4733 |
. 2
⊢
(∃𝑥 ∈
(𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
111 | 109, 110 | bitr4di 289 |
1
⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}))) |