Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv Structured version   Visualization version   GIF version

Theorem dihatexv 38476
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
Hypotheses
Ref Expression
dihatexv.b 𝐵 = (Base‘𝐾)
dihatexv.a 𝐴 = (Atoms‘𝐾)
dihatexv.h 𝐻 = (LHyp‘𝐾)
dihatexv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatexv.v 𝑉 = (Base‘𝑈)
dihatexv.o 0 = (0g𝑈)
dihatexv.n 𝑁 = (LSpan‘𝑈)
dihatexv.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatexv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihatexv.q (𝜑𝑄𝐵)
Assertion
Ref Expression
dihatexv (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝐻(𝑥)   0 (𝑥)

Proof of Theorem dihatexv
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihatexv.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21ad2antrr 724 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simplr 767 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
4 simpr 487 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊)
5 dihatexv.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
6 eqid 2823 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
7 dihatexv.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dihatexv.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2823 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2823 . . . . . . . . 9 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
11 dihatexv.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 dihatexv.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihatexv.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
145, 6, 7, 8, 9, 10, 11, 12, 13dih1dimb2 38379 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
152, 3, 4, 14syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
161ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 487 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
18 eqid 2823 . . . . . . . . . . . . . 14 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
195, 8, 9, 18, 10tendo0cl 37928 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
2016, 19syl 17 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
21 dihatexv.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
228, 9, 18, 11, 21dvhelvbasei 38226 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
2316, 17, 20, 22syl12anc 834 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
24 sneq 4579 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → {𝑥} = {⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})
2524fveq2d 6676 . . . . . . . . . . . 12 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}))
2625rspceeqv 3640 . . . . . . . . . . 11 ((⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2723, 26sylan 582 . . . . . . . . . 10 (((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2827ex 415 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
2928adantld 493 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3029rexlimdva 3286 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3115, 30mpd 15 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
321ad2antrr 724 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 eqid 2823 . . . . . . . . . . 11 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
346, 7, 8, 33lhpocnel2 37157 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
3532, 34syl 17 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
36 simplr 767 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
37 simpr 487 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
38 eqid 2823 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
396, 7, 8, 9, 38ltrniotacl 37717 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
4032, 35, 36, 37, 39syl112anc 1370 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
418, 9, 18tendoidcl 37907 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
4232, 41syl 17 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
438, 9, 18, 11, 21dvhelvbasei 38226 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
4432, 40, 42, 43syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
456, 7, 8, 33, 9, 12, 11, 13, 38dih1dimc 38380 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4632, 36, 37, 45syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
47 sneq 4579 . . . . . . . . 9 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → {𝑥} = {⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})
4847fveq2d 6676 . . . . . . . 8 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948rspceeqv 3640 . . . . . . 7 ((⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5044, 46, 49syl2anc 586 . . . . . 6 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5131, 50pm2.61dan 811 . . . . 5 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
521simpld 497 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
5352ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL)
54 hlatl 36498 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
5553, 54syl 17 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat)
56 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴)
57 eqid 2823 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
5857, 7atn0 36446 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
5955, 56, 58syl2anc 586 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾))
60 sneq 4579 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → {𝑥} = { 0 })
6160fveq2d 6676 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
62613ad2ant3 1131 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
63 simp1ll 1232 . . . . . . . . . . . . . . 15 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑)
648, 11, 1dvhlmod 38248 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
65 dihatexv.o . . . . . . . . . . . . . . . 16 0 = (0g𝑈)
6665, 13lspsn0 19782 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
6763, 64, 663syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 })
6862, 67eqtrd 2858 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 })
69 simp2 1133 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝑁‘{𝑥}))
7057, 8, 12, 11, 65dih0 38418 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
7163, 1, 703syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 })
7268, 69, 713eqtr4d 2868 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝐼‘(0.‘𝐾)))
7363, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 dihatexv.q . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
7563, 74syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄𝐵)
7663, 52syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL)
77 hlop 36500 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OP)
785, 57op0cl 36322 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
7976, 77, 783syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵)
805, 8, 12dih11 38403 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8173, 75, 79, 80syl3anc 1367 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8272, 81mpbid 234 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾))
83823expia 1117 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0𝑄 = (0.‘𝐾)))
8483necon3d 3039 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥0 ))
8559, 84mpd 15 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑥0 )
8685ex 415 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → 𝑥0 ))
8786ancrd 554 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8887reximdva 3276 . . . . 5 ((𝜑𝑄𝐴) → (∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8951, 88mpd 15 . . . 4 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
9089ex 415 . . 3 (𝜑 → (𝑄𝐴 → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
911ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9274ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐵)
935, 8, 12dihcnvid1 38410 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼‘(𝐼𝑄)) = 𝑄)
9491, 92, 93syl2anc 586 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = 𝑄)
95 fveq2 6672 . . . . . . . 8 ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9695ad2antll 727 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9794, 96eqtr3d 2860 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (𝐼‘(𝑁‘{𝑥})))
9864ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod)
99 simplr 767 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥𝑉)
100 simprl 769 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥0 )
101 eqid 2823 . . . . . . . . 9 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
10221, 13, 65, 101lsatlspsn2 36130 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑥𝑉𝑥0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
10398, 99, 100, 102syl3anc 1367 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
1047, 8, 11, 12, 101dihlatat 38475 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10591, 103, 104syl2anc 586 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10697, 105eqeltrd 2915 . . . . 5 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐴)
107106ex 415 . . . 4 ((𝜑𝑥𝑉) → ((𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
108107rexlimdva 3286 . . 3 (𝜑 → (∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
10990, 108impbid 214 . 2 (𝜑 → (𝑄𝐴 ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
110 rexdifsn 4729 . 2 (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
111109, 110syl6bbr 291 1 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cdif 3935  {csn 4569  cop 4575   class class class wbr 5068  cmpt 5148   I cid 5461  ccnv 5556  cres 5559  cfv 6357  crio 7115  Basecbs 16485  lecple 16574  occoc 16575  0gc0g 16715  0.cp0 17649  LModclmod 19636  LSpanclspn 19745  LSAtomsclsa 36112  OPcops 36310  Atomscatm 36401  AtLatcal 36402  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  TEndoctendo 37890  DVecHcdvh 38216  DIsoHcdih 38366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tendo 37893  df-edring 37895  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367
This theorem is referenced by:  dihatexv2  38477
  Copyright terms: Public domain W3C validator