Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv Structured version   Visualization version   GIF version

Theorem dihatexv 39352
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
Hypotheses
Ref Expression
dihatexv.b 𝐵 = (Base‘𝐾)
dihatexv.a 𝐴 = (Atoms‘𝐾)
dihatexv.h 𝐻 = (LHyp‘𝐾)
dihatexv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatexv.v 𝑉 = (Base‘𝑈)
dihatexv.o 0 = (0g𝑈)
dihatexv.n 𝑁 = (LSpan‘𝑈)
dihatexv.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatexv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihatexv.q (𝜑𝑄𝐵)
Assertion
Ref Expression
dihatexv (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝐻(𝑥)   0 (𝑥)

Proof of Theorem dihatexv
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihatexv.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21ad2antrr 723 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simplr 766 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
4 simpr 485 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊)
5 dihatexv.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
6 eqid 2738 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
7 dihatexv.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dihatexv.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2738 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2738 . . . . . . . . 9 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
11 dihatexv.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 dihatexv.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihatexv.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
145, 6, 7, 8, 9, 10, 11, 12, 13dih1dimb2 39255 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
152, 3, 4, 14syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
161ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
18 eqid 2738 . . . . . . . . . . . . . 14 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
195, 8, 9, 18, 10tendo0cl 38804 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
2016, 19syl 17 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
21 dihatexv.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
228, 9, 18, 11, 21dvhelvbasei 39102 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
2316, 17, 20, 22syl12anc 834 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
24 sneq 4571 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → {𝑥} = {⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})
2524fveq2d 6778 . . . . . . . . . . . 12 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}))
2625rspceeqv 3575 . . . . . . . . . . 11 ((⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2723, 26sylan 580 . . . . . . . . . 10 (((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2827ex 413 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
2928adantld 491 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3029rexlimdva 3213 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3115, 30mpd 15 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
321ad2antrr 723 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 eqid 2738 . . . . . . . . . . 11 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
346, 7, 8, 33lhpocnel2 38033 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
3532, 34syl 17 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
36 simplr 766 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
37 simpr 485 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
38 eqid 2738 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
396, 7, 8, 9, 38ltrniotacl 38593 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
4032, 35, 36, 37, 39syl112anc 1373 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
418, 9, 18tendoidcl 38783 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
4232, 41syl 17 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
438, 9, 18, 11, 21dvhelvbasei 39102 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
4432, 40, 42, 43syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
456, 7, 8, 33, 9, 12, 11, 13, 38dih1dimc 39256 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4632, 36, 37, 45syl12anc 834 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
47 sneq 4571 . . . . . . . . 9 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → {𝑥} = {⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})
4847fveq2d 6778 . . . . . . . 8 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948rspceeqv 3575 . . . . . . 7 ((⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5044, 46, 49syl2anc 584 . . . . . 6 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5131, 50pm2.61dan 810 . . . . 5 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
521simpld 495 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
5352ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL)
54 hlatl 37374 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
5553, 54syl 17 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat)
56 simpllr 773 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴)
57 eqid 2738 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
5857, 7atn0 37322 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
5955, 56, 58syl2anc 584 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾))
60 sneq 4571 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → {𝑥} = { 0 })
6160fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
62613ad2ant3 1134 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
63 simp1ll 1235 . . . . . . . . . . . . . . 15 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑)
648, 11, 1dvhlmod 39124 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
65 dihatexv.o . . . . . . . . . . . . . . . 16 0 = (0g𝑈)
6665, 13lspsn0 20270 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
6763, 64, 663syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 })
6862, 67eqtrd 2778 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 })
69 simp2 1136 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝑁‘{𝑥}))
7057, 8, 12, 11, 65dih0 39294 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
7163, 1, 703syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 })
7268, 69, 713eqtr4d 2788 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝐼‘(0.‘𝐾)))
7363, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 dihatexv.q . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
7563, 74syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄𝐵)
7663, 52syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL)
77 hlop 37376 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OP)
785, 57op0cl 37198 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
7976, 77, 783syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵)
805, 8, 12dih11 39279 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8173, 75, 79, 80syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8272, 81mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾))
83823expia 1120 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0𝑄 = (0.‘𝐾)))
8483necon3d 2964 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥0 ))
8559, 84mpd 15 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑥0 )
8685ex 413 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → 𝑥0 ))
8786ancrd 552 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8887reximdva 3203 . . . . 5 ((𝜑𝑄𝐴) → (∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8951, 88mpd 15 . . . 4 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
9089ex 413 . . 3 (𝜑 → (𝑄𝐴 → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
911ad2antrr 723 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9274ad2antrr 723 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐵)
935, 8, 12dihcnvid1 39286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼‘(𝐼𝑄)) = 𝑄)
9491, 92, 93syl2anc 584 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = 𝑄)
95 fveq2 6774 . . . . . . . 8 ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9695ad2antll 726 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9794, 96eqtr3d 2780 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (𝐼‘(𝑁‘{𝑥})))
9864ad2antrr 723 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod)
99 simplr 766 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥𝑉)
100 simprl 768 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥0 )
101 eqid 2738 . . . . . . . . 9 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
10221, 13, 65, 101lsatlspsn2 37006 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑥𝑉𝑥0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
10398, 99, 100, 102syl3anc 1370 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
1047, 8, 11, 12, 101dihlatat 39351 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10591, 103, 104syl2anc 584 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10697, 105eqeltrd 2839 . . . . 5 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐴)
107106ex 413 . . . 4 ((𝜑𝑥𝑉) → ((𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
108107rexlimdva 3213 . . 3 (𝜑 → (∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
10990, 108impbid 211 . 2 (𝜑 → (𝑄𝐴 ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
110 rexdifsn 4727 . 2 (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
111109, 110bitr4di 289 1 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   I cid 5488  ccnv 5588  cres 5591  cfv 6433  crio 7231  Basecbs 16912  lecple 16969  occoc 16970  0gc0g 17150  0.cp0 18141  LModclmod 20123  LSpanclspn 20233  LSAtomsclsa 36988  OPcops 37186  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766  DVecHcdvh 39092  DIsoHcdih 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769  df-edring 38771  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243
This theorem is referenced by:  dihatexv2  39353
  Copyright terms: Public domain W3C validator