Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv Structured version   Visualization version   GIF version

Theorem dihatexv 41327
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
Hypotheses
Ref Expression
dihatexv.b 𝐵 = (Base‘𝐾)
dihatexv.a 𝐴 = (Atoms‘𝐾)
dihatexv.h 𝐻 = (LHyp‘𝐾)
dihatexv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatexv.v 𝑉 = (Base‘𝑈)
dihatexv.o 0 = (0g𝑈)
dihatexv.n 𝑁 = (LSpan‘𝑈)
dihatexv.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatexv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihatexv.q (𝜑𝑄𝐵)
Assertion
Ref Expression
dihatexv (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝐻(𝑥)   0 (𝑥)

Proof of Theorem dihatexv
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihatexv.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21ad2antrr 726 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simplr 768 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
4 simpr 484 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊)
5 dihatexv.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
6 eqid 2729 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
7 dihatexv.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dihatexv.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2729 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2729 . . . . . . . . 9 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
11 dihatexv.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 dihatexv.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihatexv.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
145, 6, 7, 8, 9, 10, 11, 12, 13dih1dimb2 41230 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
152, 3, 4, 14syl12anc 836 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
161ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
18 eqid 2729 . . . . . . . . . . . . . 14 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
195, 8, 9, 18, 10tendo0cl 40779 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
2016, 19syl 17 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
21 dihatexv.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
228, 9, 18, 11, 21dvhelvbasei 41077 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
2316, 17, 20, 22syl12anc 836 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
24 sneq 4587 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → {𝑥} = {⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})
2524fveq2d 6826 . . . . . . . . . . . 12 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}))
2625rspceeqv 3600 . . . . . . . . . . 11 ((⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2723, 26sylan 580 . . . . . . . . . 10 (((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2827ex 412 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
2928adantld 490 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3029rexlimdva 3130 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3115, 30mpd 15 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
321ad2antrr 726 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 eqid 2729 . . . . . . . . . . 11 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
346, 7, 8, 33lhpocnel2 40008 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
3532, 34syl 17 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
36 simplr 768 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
37 simpr 484 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
38 eqid 2729 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
396, 7, 8, 9, 38ltrniotacl 40568 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
4032, 35, 36, 37, 39syl112anc 1376 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
418, 9, 18tendoidcl 40758 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
4232, 41syl 17 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
438, 9, 18, 11, 21dvhelvbasei 41077 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
4432, 40, 42, 43syl12anc 836 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
456, 7, 8, 33, 9, 12, 11, 13, 38dih1dimc 41231 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4632, 36, 37, 45syl12anc 836 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
47 sneq 4587 . . . . . . . . 9 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → {𝑥} = {⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})
4847fveq2d 6826 . . . . . . . 8 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948rspceeqv 3600 . . . . . . 7 ((⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5044, 46, 49syl2anc 584 . . . . . 6 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5131, 50pm2.61dan 812 . . . . 5 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
521simpld 494 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
5352ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL)
54 hlatl 39349 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
5553, 54syl 17 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat)
56 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴)
57 eqid 2729 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
5857, 7atn0 39297 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
5955, 56, 58syl2anc 584 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾))
60 sneq 4587 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → {𝑥} = { 0 })
6160fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
62613ad2ant3 1135 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
63 simp1ll 1237 . . . . . . . . . . . . . . 15 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑)
648, 11, 1dvhlmod 41099 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
65 dihatexv.o . . . . . . . . . . . . . . . 16 0 = (0g𝑈)
6665, 13lspsn0 20911 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
6763, 64, 663syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 })
6862, 67eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 })
69 simp2 1137 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝑁‘{𝑥}))
7057, 8, 12, 11, 65dih0 41269 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
7163, 1, 703syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 })
7268, 69, 713eqtr4d 2774 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝐼‘(0.‘𝐾)))
7363, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
74 dihatexv.q . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
7563, 74syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄𝐵)
7663, 52syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL)
77 hlop 39351 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OP)
785, 57op0cl 39173 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
7976, 77, 783syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵)
805, 8, 12dih11 41254 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8173, 75, 79, 80syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8272, 81mpbid 232 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾))
83823expia 1121 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0𝑄 = (0.‘𝐾)))
8483necon3d 2946 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥0 ))
8559, 84mpd 15 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑥0 )
8685ex 412 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → 𝑥0 ))
8786ancrd 551 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8887reximdva 3142 . . . . 5 ((𝜑𝑄𝐴) → (∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
8951, 88mpd 15 . . . 4 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
9089ex 412 . . 3 (𝜑 → (𝑄𝐴 → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
911ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9274ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐵)
935, 8, 12dihcnvid1 41261 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼‘(𝐼𝑄)) = 𝑄)
9491, 92, 93syl2anc 584 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = 𝑄)
95 fveq2 6822 . . . . . . . 8 ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9695ad2antll 729 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9794, 96eqtr3d 2766 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (𝐼‘(𝑁‘{𝑥})))
9864ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod)
99 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥𝑉)
100 simprl 770 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥0 )
101 eqid 2729 . . . . . . . . 9 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
10221, 13, 65, 101lsatlspsn2 38981 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑥𝑉𝑥0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
10398, 99, 100, 102syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
1047, 8, 11, 12, 101dihlatat 41326 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10591, 103, 104syl2anc 584 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10697, 105eqeltrd 2828 . . . . 5 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐴)
107106ex 412 . . . 4 ((𝜑𝑥𝑉) → ((𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
108107rexlimdva 3130 . . 3 (𝜑 → (∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
10990, 108impbid 212 . 2 (𝜑 → (𝑄𝐴 ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
110 rexdifsn 4745 . 2 (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
111109, 110bitr4di 289 1 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3900  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   I cid 5513  ccnv 5618  cres 5621  cfv 6482  crio 7305  Basecbs 17120  lecple 17168  occoc 17169  0gc0g 17343  0.cp0 18327  LModclmod 20763  LSpanclspn 20874  LSAtomsclsa 38963  OPcops 39161  Atomscatm 39252  AtLatcal 39253  HLchlt 39339  LHypclh 39973  LTrncltrn 40090  TEndoctendo 40741  DVecHcdvh 41067  DIsoHcdih 41217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38942
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38965  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tendo 40744  df-edring 40746  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218
This theorem is referenced by:  dihatexv2  41328
  Copyright terms: Public domain W3C validator