| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl8b | Structured version Visualization version GIF version | ||
| Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfl8b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfl8b.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfl8b.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfl8b.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfl8b.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfl8b.z | ⊢ 0 = (0g‘𝑈) |
| lcfl8b.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfl8b.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfl8b.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfl8b.y | ⊢ 𝑌 = (0g‘𝐷) |
| lcfl8b.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfl8b.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfl8b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) |
| Ref | Expression |
|---|---|
| lcfl8b | ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfl8b.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) | |
| 2 | 1 | eldifad 3943 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| 3 | lcfl8b.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | lcfl8b.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 5 | lcfl8b.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | lcfl8b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | lcfl8b.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 8 | lcfl8b.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 9 | lcfl8b.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 10 | lcfl8b.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 9 | lcfl1lem 41515 | . . . . . . 7 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 12 | 11 | simplbi 497 | . . . . . 6 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹) |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 14 | 3, 4, 5, 6, 7, 8, 9, 10, 13 | lcfl8 41526 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) |
| 15 | 2, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) |
| 16 | fveq2 6881 | . . . . . . . . . 10 ⊢ ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) |
| 18 | lcfl8b.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 19 | 10 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 20 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ∈ 𝑉) | |
| 21 | 3, 5, 4, 6, 18, 19, 20 | dochocsn 41405 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘{𝑥})) = (𝑁‘{𝑥})) |
| 22 | 17, 21 | eqtrd 2771 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| 23 | 2, 11 | sylib 218 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 24 | 23 | simprd 495 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 25 | eldifsni 4771 | . . . . . . . . . . . . 13 ⊢ (𝐺 ∈ (𝐶 ∖ {𝑌}) → 𝐺 ≠ 𝑌) | |
| 26 | 1, 25 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ≠ 𝑌) |
| 27 | lcfl8b.d | . . . . . . . . . . . . . 14 ⊢ 𝐷 = (LDual‘𝑈) | |
| 28 | lcfl8b.y | . . . . . . . . . . . . . 14 ⊢ 𝑌 = (0g‘𝐷) | |
| 29 | 3, 5, 10 | dvhlmod 41134 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 30 | 6, 7, 8, 27, 28, 29, 13 | lkr0f2 39184 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = 𝑌)) |
| 31 | 30 | necon3bid 2977 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ 𝑌)) |
| 32 | 26, 31 | mpbird 257 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) ≠ 𝑉) |
| 33 | 24, 32 | eqnetrd 3000 | . . . . . . . . . 10 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
| 34 | 33 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
| 35 | eqid 2736 | . . . . . . . . . 10 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 36 | 13 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝐺 ∈ 𝐹) |
| 37 | 3, 4, 5, 6, 35, 7, 8, 19, 36 | dochkrsat2 41480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈))) |
| 38 | 34, 37 | mpbid 232 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈)) |
| 39 | 22, 38 | eqeltrrd 2836 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) |
| 40 | lcfl8b.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
| 41 | 29 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑈 ∈ LMod) |
| 42 | 6, 18, 40, 35, 41, 20 | lsatspn0 39023 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ((𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈) ↔ 𝑥 ≠ 0 )) |
| 43 | 39, 42 | mpbid 232 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ≠ 0 ) |
| 44 | 43, 22 | jca 511 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
| 45 | 44 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
| 46 | 45 | reximdva 3154 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
| 47 | 15, 46 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
| 48 | rexdifsn 4775 | . 2 ⊢ (∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) | |
| 49 | 47, 48 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {crab 3420 ∖ cdif 3928 {csn 4606 ‘cfv 6536 Basecbs 17233 0gc0g 17458 LModclmod 20822 LSpanclspn 20933 LSAtomsclsa 38997 LFnlclfn 39080 LKerclk 39108 LDualcld 39146 HLchlt 39373 LHypclh 40008 DVecHcdvh 41102 ocHcoch 41371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-0g 17460 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lshyp 39000 df-lfl 39081 df-lkr 39109 df-ldual 39147 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tgrp 40767 df-tendo 40779 df-edring 40781 df-dveca 41027 df-disoa 41053 df-dvech 41103 df-dib 41163 df-dic 41197 df-dih 41253 df-doch 41372 df-djh 41419 |
| This theorem is referenced by: mapdrvallem2 41669 |
| Copyright terms: Public domain | W3C validator |