Step | Hyp | Ref
| Expression |
1 | | lcfl8b.g |
. . . . 5
β’ (π β πΊ β (πΆ β {π})) |
2 | 1 | eldifad 3959 |
. . . 4
β’ (π β πΊ β πΆ) |
3 | | lcfl8b.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | | lcfl8b.o |
. . . . 5
β’ β₯ =
((ocHβπΎ)βπ) |
5 | | lcfl8b.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
6 | | lcfl8b.v |
. . . . 5
β’ π = (Baseβπ) |
7 | | lcfl8b.f |
. . . . 5
β’ πΉ = (LFnlβπ) |
8 | | lcfl8b.l |
. . . . 5
β’ πΏ = (LKerβπ) |
9 | | lcfl8b.c |
. . . . 5
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
10 | | lcfl8b.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
11 | 9 | lcfl1lem 40350 |
. . . . . . 7
β’ (πΊ β πΆ β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
12 | 11 | simplbi 498 |
. . . . . 6
β’ (πΊ β πΆ β πΊ β πΉ) |
13 | 2, 12 | syl 17 |
. . . . 5
β’ (π β πΊ β πΉ) |
14 | 3, 4, 5, 6, 7, 8, 9, 10, 13 | lcfl8 40361 |
. . . 4
β’ (π β (πΊ β πΆ β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}))) |
15 | 2, 14 | mpbid 231 |
. . 3
β’ (π β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯})) |
16 | | fveq2 6888 |
. . . . . . . . . 10
β’ ((πΏβπΊ) = ( β₯ β{π₯}) β ( β₯ β(πΏβπΊ)) = ( β₯ β( β₯
β{π₯}))) |
17 | 16 | adantl 482 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β(πΏβπΊ)) = ( β₯ β( β₯
β{π₯}))) |
18 | | lcfl8b.n |
. . . . . . . . . 10
β’ π = (LSpanβπ) |
19 | 10 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β (πΎ β HL β§ π β π»)) |
20 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β π₯ β π) |
21 | 3, 5, 4, 6, 18, 19, 20 | dochocsn 40240 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β( β₯
β{π₯})) = (πβ{π₯})) |
22 | 17, 21 | eqtrd 2772 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β(πΏβπΊ)) = (πβ{π₯})) |
23 | 2, 11 | sylib 217 |
. . . . . . . . . . . 12
β’ (π β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
24 | 23 | simprd 496 |
. . . . . . . . . . 11
β’ (π β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
25 | | eldifsni 4792 |
. . . . . . . . . . . . 13
β’ (πΊ β (πΆ β {π}) β πΊ β π) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . . 12
β’ (π β πΊ β π) |
27 | | lcfl8b.d |
. . . . . . . . . . . . . 14
β’ π· = (LDualβπ) |
28 | | lcfl8b.y |
. . . . . . . . . . . . . 14
β’ π = (0gβπ·) |
29 | 3, 5, 10 | dvhlmod 39969 |
. . . . . . . . . . . . . 14
β’ (π β π β LMod) |
30 | 6, 7, 8, 27, 28, 29, 13 | lkr0f2 38019 |
. . . . . . . . . . . . 13
β’ (π β ((πΏβπΊ) = π β πΊ = π)) |
31 | 30 | necon3bid 2985 |
. . . . . . . . . . . 12
β’ (π β ((πΏβπΊ) β π β πΊ β π)) |
32 | 26, 31 | mpbird 256 |
. . . . . . . . . . 11
β’ (π β (πΏβπΊ) β π) |
33 | 24, 32 | eqnetrd 3008 |
. . . . . . . . . 10
β’ (π β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
34 | 33 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
35 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
36 | 13 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β πΊ β πΉ) |
37 | 3, 4, 5, 6, 35, 7,
8, 19, 36 | dochkrsat2 40315 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β(πΏβπΊ)) β (LSAtomsβπ))) |
38 | 34, 37 | mpbid 231 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) |
39 | 22, 38 | eqeltrrd 2834 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β (πβ{π₯}) β (LSAtomsβπ)) |
40 | | lcfl8b.z |
. . . . . . . 8
β’ 0 =
(0gβπ) |
41 | 29 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β π β LMod) |
42 | 6, 18, 40, 35, 41, 20 | lsatspn0 37858 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β ((πβ{π₯}) β (LSAtomsβπ) β π₯ β 0 )) |
43 | 39, 42 | mpbid 231 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β π₯ β 0 ) |
44 | 43, 22 | jca 512 |
. . . . 5
β’ (((π β§ π₯ β π) β§ (πΏβπΊ) = ( β₯ β{π₯})) β (π₯ β 0 β§ ( β₯ β(πΏβπΊ)) = (πβ{π₯}))) |
45 | 44 | ex 413 |
. . . 4
β’ ((π β§ π₯ β π) β ((πΏβπΊ) = ( β₯ β{π₯}) β (π₯ β 0 β§ ( β₯ β(πΏβπΊ)) = (πβ{π₯})))) |
46 | 45 | reximdva 3168 |
. . 3
β’ (π β (βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}) β βπ₯ β π (π₯ β 0 β§ ( β₯ β(πΏβπΊ)) = (πβ{π₯})))) |
47 | 15, 46 | mpd 15 |
. 2
β’ (π β βπ₯ β π (π₯ β 0 β§ ( β₯ β(πΏβπΊ)) = (πβ{π₯}))) |
48 | | rexdifsn 4796 |
. 2
β’
(βπ₯ β
(π β { 0 })( β₯
β(πΏβπΊ)) = (πβ{π₯}) β βπ₯ β π (π₯ β 0 β§ ( β₯ β(πΏβπΊ)) = (πβ{π₯}))) |
49 | 47, 48 | sylibr 233 |
1
β’ (π β βπ₯ β (π β { 0 })( β₯ β(πΏβπΊ)) = (πβ{π₯})) |