| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl8b | Structured version Visualization version GIF version | ||
| Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfl8b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfl8b.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfl8b.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfl8b.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfl8b.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfl8b.z | ⊢ 0 = (0g‘𝑈) |
| lcfl8b.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfl8b.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfl8b.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfl8b.y | ⊢ 𝑌 = (0g‘𝐷) |
| lcfl8b.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfl8b.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfl8b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) |
| Ref | Expression |
|---|---|
| lcfl8b | ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfl8b.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) | |
| 2 | 1 | eldifad 3929 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| 3 | lcfl8b.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | lcfl8b.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 5 | lcfl8b.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | lcfl8b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | lcfl8b.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 8 | lcfl8b.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 9 | lcfl8b.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 10 | lcfl8b.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 9 | lcfl1lem 41492 | . . . . . . 7 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 12 | 11 | simplbi 497 | . . . . . 6 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹) |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 14 | 3, 4, 5, 6, 7, 8, 9, 10, 13 | lcfl8 41503 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) |
| 15 | 2, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) |
| 16 | fveq2 6861 | . . . . . . . . . 10 ⊢ ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) |
| 18 | lcfl8b.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 19 | 10 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 20 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ∈ 𝑉) | |
| 21 | 3, 5, 4, 6, 18, 19, 20 | dochocsn 41382 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘{𝑥})) = (𝑁‘{𝑥})) |
| 22 | 17, 21 | eqtrd 2765 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| 23 | 2, 11 | sylib 218 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 24 | 23 | simprd 495 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 25 | eldifsni 4757 | . . . . . . . . . . . . 13 ⊢ (𝐺 ∈ (𝐶 ∖ {𝑌}) → 𝐺 ≠ 𝑌) | |
| 26 | 1, 25 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ≠ 𝑌) |
| 27 | lcfl8b.d | . . . . . . . . . . . . . 14 ⊢ 𝐷 = (LDual‘𝑈) | |
| 28 | lcfl8b.y | . . . . . . . . . . . . . 14 ⊢ 𝑌 = (0g‘𝐷) | |
| 29 | 3, 5, 10 | dvhlmod 41111 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 30 | 6, 7, 8, 27, 28, 29, 13 | lkr0f2 39161 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = 𝑌)) |
| 31 | 30 | necon3bid 2970 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ 𝑌)) |
| 32 | 26, 31 | mpbird 257 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) ≠ 𝑉) |
| 33 | 24, 32 | eqnetrd 2993 | . . . . . . . . . 10 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
| 34 | 33 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
| 35 | eqid 2730 | . . . . . . . . . 10 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 36 | 13 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝐺 ∈ 𝐹) |
| 37 | 3, 4, 5, 6, 35, 7, 8, 19, 36 | dochkrsat2 41457 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈))) |
| 38 | 34, 37 | mpbid 232 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈)) |
| 39 | 22, 38 | eqeltrrd 2830 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) |
| 40 | lcfl8b.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
| 41 | 29 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑈 ∈ LMod) |
| 42 | 6, 18, 40, 35, 41, 20 | lsatspn0 39000 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ((𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈) ↔ 𝑥 ≠ 0 )) |
| 43 | 39, 42 | mpbid 232 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ≠ 0 ) |
| 44 | 43, 22 | jca 511 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
| 45 | 44 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
| 46 | 45 | reximdva 3147 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
| 47 | 15, 46 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
| 48 | rexdifsn 4761 | . 2 ⊢ (∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) | |
| 49 | 47, 48 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∖ cdif 3914 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 LModclmod 20773 LSpanclspn 20884 LSAtomsclsa 38974 LFnlclfn 39057 LKerclk 39085 LDualcld 39123 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 ocHcoch 41348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17411 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lsatoms 38976 df-lshyp 38977 df-lfl 39058 df-lkr 39086 df-ldual 39124 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tgrp 40744 df-tendo 40756 df-edring 40758 df-dveca 41004 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 df-doch 41349 df-djh 41396 |
| This theorem is referenced by: mapdrvallem2 41646 |
| Copyright terms: Public domain | W3C validator |