Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlines Structured version   Visualization version   GIF version

Theorem rrxlines 45967
Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
rrxlines.e 𝐸 = (ℝ^‘𝐼)
rrxlines.p 𝑃 = (ℝ ↑m 𝐼)
rrxlines.l 𝐿 = (LineM𝐸)
rrxlines.m · = ( ·𝑠𝐸)
rrxlines.a + = (+g𝐸)
Assertion
Ref Expression
rrxlines (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Distinct variable groups:   𝐸,𝑝,𝑡,𝑥,𝑦   𝐼,𝑝,𝑡,𝑥,𝑦   𝑃,𝑝
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑡)   + (𝑥,𝑦,𝑡,𝑝)   · (𝑥,𝑦,𝑡,𝑝)   𝐿(𝑥,𝑦,𝑡,𝑝)

Proof of Theorem rrxlines
StepHypRef Expression
1 rrxlines.e . . . 4 𝐸 = (ℝ^‘𝐼)
21fvexi 6770 . . 3 𝐸 ∈ V
3 eqid 2738 . . . 4 (Base‘𝐸) = (Base‘𝐸)
4 rrxlines.l . . . 4 𝐿 = (LineM𝐸)
5 eqid 2738 . . . 4 (Scalar‘𝐸) = (Scalar‘𝐸)
6 eqid 2738 . . . 4 (Base‘(Scalar‘𝐸)) = (Base‘(Scalar‘𝐸))
7 rrxlines.m . . . 4 · = ( ·𝑠𝐸)
8 rrxlines.a . . . 4 + = (+g𝐸)
9 eqid 2738 . . . 4 (-g‘(Scalar‘𝐸)) = (-g‘(Scalar‘𝐸))
10 eqid 2738 . . . 4 (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸))
113, 4, 5, 6, 7, 8, 9, 10lines 45965 . . 3 (𝐸 ∈ V → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}))
122, 11mp1i 13 . 2 (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}))
13 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1413, 1, 3rrxbasefi 24479 . . . 4 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
15 rrxlines.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
1614, 15eqtr4di 2797 . . 3 (𝐼 ∈ Fin → (Base‘𝐸) = 𝑃)
1716difeq1d 4052 . . 3 (𝐼 ∈ Fin → ((Base‘𝐸) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
181rrxsca 24465 . . . . . . 7 (𝐼 ∈ Fin → (Scalar‘𝐸) = ℝfld)
1918fveq2d 6760 . . . . . 6 (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = (Base‘ℝfld))
20 rebase 20723 . . . . . 6 ℝ = (Base‘ℝfld)
2119, 20eqtr4di 2797 . . . . 5 (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = ℝ)
2218fveq2d 6760 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = (1r‘ℝfld))
23 re1r 20730 . . . . . . . . . . . 12 1 = (1r‘ℝfld)
2422, 23eqtr4di 2797 . . . . . . . . . . 11 (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = 1)
2524oveq1d 7270 . . . . . . . . . 10 (𝐼 ∈ Fin → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡))
2625adantr 480 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡))
2718fveq2d 6760 . . . . . . . . . . 11 (𝐼 ∈ Fin → (-g‘(Scalar‘𝐸)) = (-g‘ℝfld))
2827oveqd 7272 . . . . . . . . . 10 (𝐼 ∈ Fin → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡))
2928adantr 480 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡))
3021eleq2d 2824 . . . . . . . . . . 11 (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) ↔ 𝑡 ∈ ℝ))
31 1re 10906 . . . . . . . . . . . 12 1 ∈ ℝ
32 eqid 2738 . . . . . . . . . . . . . 14 (-g‘ℝfld) = (-g‘ℝfld)
3332resubgval 20726 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) = (1(-g‘ℝfld)𝑡))
3433eqcomd 2744 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3531, 34mpan 686 . . . . . . . . . . 11 (𝑡 ∈ ℝ → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3630, 35syl6bi 252 . . . . . . . . . 10 (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)))
3736imp 406 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3826, 29, 373eqtrd 2782 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1 − 𝑡))
3938oveq1d 7270 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) = ((1 − 𝑡) · 𝑥))
4039oveq1d 7270 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))
4140eqeq2d 2749 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))))
4221, 41rexeqbidva 3346 . . . 4 (𝐼 ∈ Fin → (∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))))
4316, 42rabeqbidv 3410 . . 3 (𝐼 ∈ Fin → {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})
4416, 17, 43mpoeq123dv 7328 . 2 (𝐼 ∈ Fin → (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
4512, 44eqtrd 2778 1 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Fincfn 8691  cr 10801  1c1 10803  cmin 11135  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  -gcsg 18494  1rcur 19652  fldcrefld 20721  ℝ^crrx 24452  LineMcline 45961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-field 19909  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-tng 23646  df-tcph 24238  df-rrx 24454  df-line 45963
This theorem is referenced by:  rrxline  45968  rrxlinesc  45969
  Copyright terms: Public domain W3C validator