| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlines | Structured version Visualization version GIF version | ||
| Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxlines.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlines.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlines.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrxlines.m | ⊢ · = ( ·𝑠 ‘𝐸) |
| rrxlines.a | ⊢ + = (+g‘𝐸) |
| Ref | Expression |
|---|---|
| rrxlines | ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlines.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | 1 | fvexi 6920 | . . 3 ⊢ 𝐸 ∈ V |
| 3 | eqid 2737 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | rrxlines.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 5 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝐸) = (Scalar‘𝐸) | |
| 6 | eqid 2737 | . . . 4 ⊢ (Base‘(Scalar‘𝐸)) = (Base‘(Scalar‘𝐸)) | |
| 7 | rrxlines.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐸) | |
| 8 | rrxlines.a | . . . 4 ⊢ + = (+g‘𝐸) | |
| 9 | eqid 2737 | . . . 4 ⊢ (-g‘(Scalar‘𝐸)) = (-g‘(Scalar‘𝐸)) | |
| 10 | eqid 2737 | . . . 4 ⊢ (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸)) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lines 48652 | . . 3 ⊢ (𝐸 ∈ V → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 12 | 2, 11 | mp1i 13 | . 2 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 13 | id 22 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 14 | 13, 1, 3 | rrxbasefi 25444 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
| 15 | rrxlines.p | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 16 | 14, 15 | eqtr4di 2795 | . . 3 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = 𝑃) |
| 17 | 16 | difeq1d 4125 | . . 3 ⊢ (𝐼 ∈ Fin → ((Base‘𝐸) ∖ {𝑥}) = (𝑃 ∖ {𝑥})) |
| 18 | 1 | rrxsca 25430 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (Scalar‘𝐸) = ℝfld) |
| 19 | 18 | fveq2d 6910 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = (Base‘ℝfld)) |
| 20 | rebase 21624 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
| 21 | 19, 20 | eqtr4di 2795 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = ℝ) |
| 22 | 18 | fveq2d 6910 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = (1r‘ℝfld)) |
| 23 | re1r 21631 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℝfld) | |
| 24 | 22, 23 | eqtr4di 2795 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = 1) |
| 25 | 24 | oveq1d 7446 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡)) |
| 26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡)) |
| 27 | 18 | fveq2d 6910 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (-g‘(Scalar‘𝐸)) = (-g‘ℝfld)) |
| 28 | 27 | oveqd 7448 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡)) |
| 29 | 28 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡)) |
| 30 | 21 | eleq2d 2827 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) ↔ 𝑡 ∈ ℝ)) |
| 31 | 1re 11261 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ | |
| 32 | eqid 2737 | . . . . . . . . . . . . . 14 ⊢ (-g‘ℝfld) = (-g‘ℝfld) | |
| 33 | 32 | resubgval 21627 | . . . . . . . . . . . . 13 ⊢ ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) = (1(-g‘ℝfld)𝑡)) |
| 34 | 33 | eqcomd 2743 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 35 | 31, 34 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑡 ∈ ℝ → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 36 | 30, 35 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))) |
| 37 | 36 | imp 406 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 38 | 26, 29, 37 | 3eqtrd 2781 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1 − 𝑡)) |
| 39 | 38 | oveq1d 7446 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) = ((1 − 𝑡) · 𝑥)) |
| 40 | 39 | oveq1d 7446 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))) |
| 41 | 40 | eqeq2d 2748 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))) |
| 42 | 21, 41 | rexeqbidva 3333 | . . . 4 ⊢ (𝐼 ∈ Fin → (∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))) |
| 43 | 16, 42 | rabeqbidv 3455 | . . 3 ⊢ (𝐼 ∈ Fin → {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) |
| 44 | 16, 17, 43 | mpoeq123dv 7508 | . 2 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 45 | 12, 44 | eqtrd 2777 | 1 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 Vcvv 3480 ∖ cdif 3948 {csn 4626 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 Fincfn 8985 ℝcr 11154 1c1 11156 − cmin 11492 Basecbs 17247 +gcplusg 17297 Scalarcsca 17300 ·𝑠 cvsca 17301 -gcsg 18953 1rcur 20178 ℝfldcrefld 21622 ℝ^crrx 25417 LineMcline 48648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-subrng 20546 df-subrg 20570 df-drng 20731 df-field 20732 df-sra 21172 df-rgmod 21173 df-cnfld 21365 df-refld 21623 df-dsmm 21752 df-frlm 21767 df-tng 24597 df-tcph 25203 df-rrx 25419 df-line 48650 |
| This theorem is referenced by: rrxline 48655 rrxlinesc 48656 |
| Copyright terms: Public domain | W3C validator |