| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlines | Structured version Visualization version GIF version | ||
| Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxlines.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlines.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlines.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrxlines.m | ⊢ · = ( ·𝑠 ‘𝐸) |
| rrxlines.a | ⊢ + = (+g‘𝐸) |
| Ref | Expression |
|---|---|
| rrxlines | ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlines.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | 1 | fvexi 6854 | . . 3 ⊢ 𝐸 ∈ V |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | rrxlines.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝐸) = (Scalar‘𝐸) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝐸)) = (Base‘(Scalar‘𝐸)) | |
| 7 | rrxlines.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐸) | |
| 8 | rrxlines.a | . . . 4 ⊢ + = (+g‘𝐸) | |
| 9 | eqid 2729 | . . . 4 ⊢ (-g‘(Scalar‘𝐸)) = (-g‘(Scalar‘𝐸)) | |
| 10 | eqid 2729 | . . . 4 ⊢ (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸)) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lines 48713 | . . 3 ⊢ (𝐸 ∈ V → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 12 | 2, 11 | mp1i 13 | . 2 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 13 | id 22 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 14 | 13, 1, 3 | rrxbasefi 25343 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
| 15 | rrxlines.p | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 16 | 14, 15 | eqtr4di 2782 | . . 3 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = 𝑃) |
| 17 | 16 | difeq1d 4084 | . . 3 ⊢ (𝐼 ∈ Fin → ((Base‘𝐸) ∖ {𝑥}) = (𝑃 ∖ {𝑥})) |
| 18 | 1 | rrxsca 25329 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (Scalar‘𝐸) = ℝfld) |
| 19 | 18 | fveq2d 6844 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = (Base‘ℝfld)) |
| 20 | rebase 21548 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
| 21 | 19, 20 | eqtr4di 2782 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = ℝ) |
| 22 | 18 | fveq2d 6844 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = (1r‘ℝfld)) |
| 23 | re1r 21555 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℝfld) | |
| 24 | 22, 23 | eqtr4di 2782 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = 1) |
| 25 | 24 | oveq1d 7384 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡)) |
| 26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡)) |
| 27 | 18 | fveq2d 6844 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (-g‘(Scalar‘𝐸)) = (-g‘ℝfld)) |
| 28 | 27 | oveqd 7386 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡)) |
| 29 | 28 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡)) |
| 30 | 21 | eleq2d 2814 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) ↔ 𝑡 ∈ ℝ)) |
| 31 | 1re 11150 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ | |
| 32 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (-g‘ℝfld) = (-g‘ℝfld) | |
| 33 | 32 | resubgval 21551 | . . . . . . . . . . . . 13 ⊢ ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) = (1(-g‘ℝfld)𝑡)) |
| 34 | 33 | eqcomd 2735 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 35 | 31, 34 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑡 ∈ ℝ → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 36 | 30, 35 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))) |
| 37 | 36 | imp 406 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)) |
| 38 | 26, 29, 37 | 3eqtrd 2768 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1 − 𝑡)) |
| 39 | 38 | oveq1d 7384 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) = ((1 − 𝑡) · 𝑥)) |
| 40 | 39 | oveq1d 7384 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))) |
| 41 | 40 | eqeq2d 2740 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))) |
| 42 | 21, 41 | rexeqbidva 3303 | . . . 4 ⊢ (𝐼 ∈ Fin → (∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))) |
| 43 | 16, 42 | rabeqbidv 3421 | . . 3 ⊢ (𝐼 ∈ Fin → {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) |
| 44 | 16, 17, 43 | mpoeq123dv 7444 | . 2 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| 45 | 12, 44 | eqtrd 2764 | 1 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 Vcvv 3444 ∖ cdif 3908 {csn 4585 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 Fincfn 8895 ℝcr 11043 1c1 11045 − cmin 11381 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 ·𝑠 cvsca 17200 -gcsg 18849 1rcur 20101 ℝfldcrefld 21546 ℝ^crrx 25316 LineMcline 48709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-subrng 20466 df-subrg 20490 df-drng 20651 df-field 20652 df-sra 21112 df-rgmod 21113 df-cnfld 21297 df-refld 21547 df-dsmm 21674 df-frlm 21689 df-tng 24505 df-tcph 25102 df-rrx 25318 df-line 48711 |
| This theorem is referenced by: rrxline 48716 rrxlinesc 48717 |
| Copyright terms: Public domain | W3C validator |