MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkge Structured version   Visualization version   GIF version

Theorem eengtrkge 28513
Description: The geometry structure for 𝔼↑𝑁 is a Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkge (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiGE)

Proof of Theorem eengtrkge
Dummy variables π‘Ž 𝑏 𝑒 𝑣 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6906 . 2 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ V)
2 simpll 764 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑁 ∈ β„•)
3 simprl 768 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
4 eengbas 28507 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
54adantr 480 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
63, 5eleqtrrd 2835 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
76adantr 480 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (π”Όβ€˜π‘))
8 simprr 770 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
98, 5eleqtrrd 2835 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
109adantr 480 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
113adantr 480 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
128adantr 480 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
13 simpr1 1193 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
14 simpr3 1195 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
154adantr 480 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
1614, 15eleqtrrd 2835 . . . . . . 7 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
172, 11, 12, 13, 16syl13anc 1371 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
18 simpr2 1194 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)))
194ad2antrr 723 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
2018, 19eleqtrrd 2835 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑒 ∈ (π”Όβ€˜π‘))
21 simpr3 1195 . . . . . . 7 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))
2221, 19eleqtrrd 2835 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ 𝑣 ∈ (π”Όβ€˜π‘))
23 axeuclid 28489 . . . . . 6 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) ∧ (𝑒 ∈ (π”Όβ€˜π‘) ∧ 𝑣 ∈ (π”Όβ€˜π‘))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘£βŸ© ∧ 𝑒 Btwn βŸ¨π‘¦, π‘§βŸ© ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆƒπ‘ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ∧ 𝑧 Btwn ⟨π‘₯, π‘βŸ© ∧ 𝑣 Btwn βŸ¨π‘Ž, π‘βŸ©)))
242, 7, 10, 17, 20, 22, 23syl132anc 1387 . . . . 5 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘£βŸ© ∧ 𝑒 Btwn βŸ¨π‘¦, π‘§βŸ© ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆƒπ‘ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ∧ 𝑧 Btwn ⟨π‘₯, π‘βŸ© ∧ 𝑣 Btwn βŸ¨π‘Ž, π‘βŸ©)))
25 eqid 2731 . . . . . . 7 (Baseβ€˜(EEGβ€˜π‘)) = (Baseβ€˜(EEGβ€˜π‘))
26 eqid 2731 . . . . . . 7 (Itvβ€˜(EEGβ€˜π‘)) = (Itvβ€˜(EEGβ€˜π‘))
272, 25, 26, 11, 21, 18ebtwntg 28508 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑒 Btwn ⟨π‘₯, π‘£βŸ© ↔ 𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣)))
282, 25, 26, 12, 13, 18ebtwntg 28508 . . . . . 6 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (𝑒 Btwn βŸ¨π‘¦, π‘§βŸ© ↔ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧)))
2927, 283anbi12d 1436 . . . . 5 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 Btwn ⟨π‘₯, π‘£βŸ© ∧ 𝑒 Btwn βŸ¨π‘¦, π‘§βŸ© ∧ π‘₯ β‰  𝑒) ↔ (𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣) ∧ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ π‘₯ β‰  𝑒)))
3019adantr 480 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
312ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
3211ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)))
33 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (π”Όβ€˜π‘))
3433, 30eleqtrd 2834 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
3534adantr 480 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ π‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘)))
3612ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))
3731, 25, 26, 32, 35, 36ebtwntg 28508 . . . . . . . 8 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ (𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ↔ 𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž)))
38 simpr 484 . . . . . . . . . 10 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑏 ∈ (π”Όβ€˜π‘))
3919ad2antrr 723 . . . . . . . . . 10 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
4038, 39eleqtrd 2834 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑏 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4113ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4231, 25, 26, 32, 40, 41ebtwntg 28508 . . . . . . . 8 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ (𝑧 Btwn ⟨π‘₯, π‘βŸ© ↔ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏)))
4321ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4431, 25, 26, 35, 40, 43ebtwntg 28508 . . . . . . . 8 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ (𝑣 Btwn βŸ¨π‘Ž, π‘βŸ© ↔ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏)))
4537, 42, 443anbi123d 1435 . . . . . . 7 (((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) ∧ 𝑏 ∈ (π”Όβ€˜π‘)) β†’ ((𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ∧ 𝑧 Btwn ⟨π‘₯, π‘βŸ© ∧ 𝑣 Btwn βŸ¨π‘Ž, π‘βŸ©) ↔ (𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
4630, 45rexeqbidva 3327 . . . . . 6 ((((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ π‘Ž ∈ (π”Όβ€˜π‘)) β†’ (βˆƒπ‘ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ∧ 𝑧 Btwn ⟨π‘₯, π‘βŸ© ∧ 𝑣 Btwn βŸ¨π‘Ž, π‘βŸ©) ↔ βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
4719, 46rexeqbidva 3327 . . . . 5 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ (βˆƒπ‘Ž ∈ (π”Όβ€˜π‘)βˆƒπ‘ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨π‘₯, π‘ŽβŸ© ∧ 𝑧 Btwn ⟨π‘₯, π‘βŸ© ∧ 𝑣 Btwn βŸ¨π‘Ž, π‘βŸ©) ↔ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
4824, 29, 473imtr3d 293 . . . 4 (((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) ∧ (𝑧 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑒 ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑣 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ ((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣) ∧ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
4948ralrimivvva 3202 . . 3 ((𝑁 ∈ β„• ∧ (π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘)) ∧ 𝑦 ∈ (Baseβ€˜(EEGβ€˜π‘)))) β†’ βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣) ∧ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
5049ralrimivva 3199 . 2 (𝑁 ∈ β„• β†’ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣) ∧ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏))))
51 eqid 2731 . . 3 (distβ€˜(EEGβ€˜π‘)) = (distβ€˜(EEGβ€˜π‘))
5225, 51, 26istrkge 27976 . 2 ((EEGβ€˜π‘) ∈ TarskiGE ↔ ((EEGβ€˜π‘) ∈ V ∧ βˆ€π‘₯ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘¦ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘§ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘’ ∈ (Baseβ€˜(EEGβ€˜π‘))βˆ€π‘£ ∈ (Baseβ€˜(EEGβ€˜π‘))((𝑒 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑣) ∧ 𝑒 ∈ (𝑦(Itvβ€˜(EEGβ€˜π‘))𝑧) ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ (Baseβ€˜(EEGβ€˜π‘))βˆƒπ‘ ∈ (Baseβ€˜(EEGβ€˜π‘))(𝑦 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))π‘Ž) ∧ 𝑧 ∈ (π‘₯(Itvβ€˜(EEGβ€˜π‘))𝑏) ∧ 𝑣 ∈ (π‘Ž(Itvβ€˜(EEGβ€˜π‘))𝑏)))))
531, 50, 52sylanbrc 582 1 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) ∈ TarskiGE)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  Vcvv 3473  βŸ¨cop 4634   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  β„•cn 12217  Basecbs 17149  distcds 17211  TarskiGEcstrkge 27951  Itvcitv 27952  π”Όcee 28414   Btwn cbtwn 28415  EEGceeng 28503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-icc 13336  df-fz 13490  df-seq 13972  df-sum 15638  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-ds 17224  df-itv 27954  df-lng 27955  df-trkge 27970  df-ee 28417  df-btwn 28418  df-eeng 28504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator