MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengtrkge Structured version   Visualization version   GIF version

Theorem eengtrkge 27258
Description: The geometry structure for 𝔼↑𝑁 is a Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengtrkge (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGE)

Proof of Theorem eengtrkge
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6771 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
2 simpll 763 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑁 ∈ ℕ)
3 simprl 767 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
4 eengbas 27252 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
54adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
63, 5eleqtrrd 2842 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
76adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (𝔼‘𝑁))
8 simprr 769 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
98, 5eleqtrrd 2842 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
109adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (𝔼‘𝑁))
113adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
128adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
13 simpr1 1192 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
14 simpr3 1194 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
154adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
1614, 15eleqtrrd 2842 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑧 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
172, 11, 12, 13, 16syl13anc 1370 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑧 ∈ (𝔼‘𝑁))
18 simpr2 1193 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (Base‘(EEG‘𝑁)))
194ad2antrr 722 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
2018, 19eleqtrrd 2842 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑢 ∈ (𝔼‘𝑁))
21 simpr3 1194 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
2221, 19eleqtrrd 2842 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → 𝑣 ∈ (𝔼‘𝑁))
23 axeuclid 27234 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ((𝑢 Btwn ⟨𝑥, 𝑣⟩ ∧ 𝑢 Btwn ⟨𝑦, 𝑧⟩ ∧ 𝑥𝑢) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑎⟩ ∧ 𝑧 Btwn ⟨𝑥, 𝑏⟩ ∧ 𝑣 Btwn ⟨𝑎, 𝑏⟩)))
242, 7, 10, 17, 20, 22, 23syl132anc 1386 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑣⟩ ∧ 𝑢 Btwn ⟨𝑦, 𝑧⟩ ∧ 𝑥𝑢) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑎⟩ ∧ 𝑧 Btwn ⟨𝑥, 𝑏⟩ ∧ 𝑣 Btwn ⟨𝑎, 𝑏⟩)))
25 eqid 2738 . . . . . . 7 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
26 eqid 2738 . . . . . . 7 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
272, 25, 26, 11, 21, 18ebtwntg 27253 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑥, 𝑣⟩ ↔ 𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣)))
282, 25, 26, 12, 13, 18ebtwntg 27253 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (𝑢 Btwn ⟨𝑦, 𝑧⟩ ↔ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧)))
2927, 283anbi12d 1435 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 Btwn ⟨𝑥, 𝑣⟩ ∧ 𝑢 Btwn ⟨𝑦, 𝑧⟩ ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥𝑢)))
3019adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
312ad2antrr 722 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
3211ad2antrr 722 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (Base‘(EEG‘𝑁)))
33 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
3433, 30eleqtrd 2841 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
3534adantr 480 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (Base‘(EEG‘𝑁)))
3612ad2antrr 722 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (Base‘(EEG‘𝑁)))
3731, 25, 26, 32, 35, 36ebtwntg 27253 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑎⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎)))
38 simpr 484 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (𝔼‘𝑁))
3919ad2antrr 722 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
4038, 39eleqtrd 2841 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (Base‘(EEG‘𝑁)))
4113ad2antrr 722 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (Base‘(EEG‘𝑁)))
4231, 25, 26, 32, 40, 41ebtwntg 27253 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑧 Btwn ⟨𝑥, 𝑏⟩ ↔ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏)))
4321ad2antrr 722 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (Base‘(EEG‘𝑁)))
4431, 25, 26, 35, 40, 43ebtwntg 27253 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑣 Btwn ⟨𝑎, 𝑏⟩ ↔ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))
4537, 42, 443anbi123d 1434 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑏 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝑥, 𝑎⟩ ∧ 𝑧 Btwn ⟨𝑥, 𝑏⟩ ∧ 𝑣 Btwn ⟨𝑎, 𝑏⟩) ↔ (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
4630, 45rexeqbidva 3346 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑎⟩ ∧ 𝑧 Btwn ⟨𝑥, 𝑏⟩ ∧ 𝑣 Btwn ⟨𝑎, 𝑏⟩) ↔ ∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
4719, 46rexeqbidva 3346 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → (∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑥, 𝑎⟩ ∧ 𝑧 Btwn ⟨𝑥, 𝑏⟩ ∧ 𝑣 Btwn ⟨𝑎, 𝑏⟩) ↔ ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
4824, 29, 473imtr3d 292 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) ∧ (𝑧 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑢 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑣 ∈ (Base‘(EEG‘𝑁)))) → ((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
4948ralrimivvva 3115 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ (Base‘(EEG‘𝑁)))) → ∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
5049ralrimivva 3114 . 2 (𝑁 ∈ ℕ → ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏))))
51 eqid 2738 . . 3 (dist‘(EEG‘𝑁)) = (dist‘(EEG‘𝑁))
5225, 51, 26istrkge 26722 . 2 ((EEG‘𝑁) ∈ TarskiGE ↔ ((EEG‘𝑁) ∈ V ∧ ∀𝑥 ∈ (Base‘(EEG‘𝑁))∀𝑦 ∈ (Base‘(EEG‘𝑁))∀𝑧 ∈ (Base‘(EEG‘𝑁))∀𝑢 ∈ (Base‘(EEG‘𝑁))∀𝑣 ∈ (Base‘(EEG‘𝑁))((𝑢 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑣) ∧ 𝑢 ∈ (𝑦(Itv‘(EEG‘𝑁))𝑧) ∧ 𝑥𝑢) → ∃𝑎 ∈ (Base‘(EEG‘𝑁))∃𝑏 ∈ (Base‘(EEG‘𝑁))(𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑎) ∧ 𝑧 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑏) ∧ 𝑣 ∈ (𝑎(Itv‘(EEG‘𝑁))𝑏)))))
531, 50, 52sylanbrc 582 1 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGE)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cn 11903  Basecbs 16840  distcds 16897  TarskiGEcstrkge 26698  Itvcitv 26699  𝔼cee 27159   Btwn cbtwn 27160  EEGceeng 27248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-icc 13015  df-fz 13169  df-seq 13650  df-sum 15326  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-ds 16910  df-itv 26701  df-lng 26702  df-trkge 26716  df-ee 27162  df-btwn 27163  df-eeng 27249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator