Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusdrng Structured version   Visualization version   GIF version

Theorem opprqusdrng 33457
Description: The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (𝜑𝑅 ∈ Ring)
opprqus1r.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
opprqusdrng (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))

Proof of Theorem opprqusdrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (oppr𝑄) = (oppr𝑄)
2 eqid 2729 . . . . . 6 (1r𝑄) = (1r𝑄)
31, 2oppr1 20270 . . . . 5 (1r𝑄) = (1r‘(oppr𝑄))
4 opprqus.b . . . . . 6 𝐵 = (Base‘𝑅)
5 opprqus.o . . . . . 6 𝑂 = (oppr𝑅)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus1r.r . . . . . 6 (𝜑𝑅 ∈ Ring)
8 opprqus1r.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
94, 5, 6, 7, 8opprqus1r 33456 . . . . 5 (𝜑 → (1r‘(oppr𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
103, 9eqtrid 2776 . . . 4 (𝜑 → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
11 eqid 2729 . . . . . 6 (0g𝑄) = (0g𝑄)
121, 11oppr0 20269 . . . . 5 (0g𝑄) = (0g‘(oppr𝑄))
1382idllidld 21196 . . . . . . 7 (𝜑𝐼 ∈ (LIdeal‘𝑅))
14 lidlnsg 21190 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
157, 13, 14syl2anc 584 . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
164, 5, 6, 15opprqus0g 33454 . . . . 5 (𝜑 → (0g‘(oppr𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1712, 16eqtrid 2776 . . . 4 (𝜑 → (0g𝑄) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1810, 17neeq12d 2986 . . 3 (𝜑 → ((1r𝑄) ≠ (0g𝑄) ↔ (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))))
19 eqid 2729 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
201, 19opprbas 20263 . . . . . 6 (Base‘𝑄) = (Base‘(oppr𝑄))
21 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
224, 21lidlss 21154 . . . . . . . 8 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼𝐵)
2313, 22syl 17 . . . . . . 7 (𝜑𝐼𝐵)
244, 5, 6, 7, 23opprqusbas 33452 . . . . . 6 (𝜑 → (Base‘(oppr𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2520, 24eqtrid 2776 . . . . 5 (𝜑 → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2617sneqd 4597 . . . . 5 (𝜑 → {(0g𝑄)} = {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})
2725, 26difeq12d 4086 . . . 4 (𝜑 → ((Base‘𝑄) ∖ {(0g𝑄)}) = ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))}))
2825adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
297ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑅 ∈ Ring)
308ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝐼 ∈ (2Ideal‘𝑅))
31 simplr 768 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
3231eldifad 3923 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ (Base‘𝑄))
33 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑦 ∈ (Base‘𝑄))
344, 5, 6, 29, 30, 19, 32, 33opprqusmulr 33455 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑥(.r‘(oppr𝑄))𝑦) = (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦))
3510ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
3634, 35eqeq12d 2745 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ↔ (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
374, 5, 6, 29, 30, 19, 33, 32opprqusmulr 33455 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑦(.r‘(oppr𝑄))𝑥) = (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥))
3837, 35eqeq12d 2745 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄) ↔ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
3936, 38anbi12d 632 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4028, 39rexeqbidva 3303 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4127, 40raleqbidva 3302 . . 3 (𝜑 → (∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4218, 41anbi12d 632 . 2 (𝜑 → (((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄))) ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
43 eqid 2729 . . 3 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
44 eqid 2729 . . . 4 (Unit‘𝑄) = (Unit‘𝑄)
4544, 1opprunit 20297 . . 3 (Unit‘𝑄) = (Unit‘(oppr𝑄))
46 eqid 2729 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
476, 46qusring 21217 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
487, 8, 47syl2anc 584 . . . 4 (𝜑𝑄 ∈ Ring)
491opprring 20267 . . . 4 (𝑄 ∈ Ring → (oppr𝑄) ∈ Ring)
5048, 49syl 17 . . 3 (𝜑 → (oppr𝑄) ∈ Ring)
5120, 12, 3, 43, 45, 50isdrng4 33261 . 2 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ ((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)))))
52 eqid 2729 . . 3 (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))
53 eqid 2729 . . 3 (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))
54 eqid 2729 . . 3 (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))
55 eqid 2729 . . 3 (.r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (.r‘(𝑂 /s (𝑂 ~QG 𝐼)))
56 eqid 2729 . . 3 (Unit‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Unit‘(𝑂 /s (𝑂 ~QG 𝐼)))
575opprring 20267 . . . . 5 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
587, 57syl 17 . . . 4 (𝜑𝑂 ∈ Ring)
595, 7oppr2idl 33450 . . . . 5 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
608, 59eleqtrd 2830 . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑂))
61 eqid 2729 . . . . 5 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
62 eqid 2729 . . . . 5 (2Ideal‘𝑂) = (2Ideal‘𝑂)
6361, 62qusring 21217 . . . 4 ((𝑂 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑂)) → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6458, 60, 63syl2anc 584 . . 3 (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6552, 53, 54, 55, 56, 64isdrng4 33261 . 2 (𝜑 → ((𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
6642, 51, 653bitr4d 311 1 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378   /s cqus 17444  NrmSGrpcnsg 19035   ~QG cqg 19036  1rcur 20101  Ringcrg 20153  opprcoppr 20256  Unitcui 20275  DivRingcdr 20649  LIdealclidl 21148  2Idealc2idl 21191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-nsg 19038  df-eqg 19039  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-2idl 21192
This theorem is referenced by:  qsdrng  33461
  Copyright terms: Public domain W3C validator