Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusdrng Structured version   Visualization version   GIF version

Theorem opprqusdrng 33076
Description: The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐡 = (Baseβ€˜π‘…)
opprqus.o 𝑂 = (opprβ€˜π‘…)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (πœ‘ β†’ 𝑅 ∈ Ring)
opprqus1r.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
Assertion
Ref Expression
opprqusdrng (πœ‘ β†’ ((opprβ€˜π‘„) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))

Proof of Theorem opprqusdrng
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . . . 6 (opprβ€˜π‘„) = (opprβ€˜π‘„)
2 eqid 2724 . . . . . 6 (1rβ€˜π‘„) = (1rβ€˜π‘„)
31, 2oppr1 20242 . . . . 5 (1rβ€˜π‘„) = (1rβ€˜(opprβ€˜π‘„))
4 opprqus.b . . . . . 6 𝐡 = (Baseβ€˜π‘…)
5 opprqus.o . . . . . 6 𝑂 = (opprβ€˜π‘…)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus1r.r . . . . . 6 (πœ‘ β†’ 𝑅 ∈ Ring)
8 opprqus1r.i . . . . . 6 (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
94, 5, 6, 7, 8opprqus1r 33075 . . . . 5 (πœ‘ β†’ (1rβ€˜(opprβ€˜π‘„)) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
103, 9eqtrid 2776 . . . 4 (πœ‘ β†’ (1rβ€˜π‘„) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
11 eqid 2724 . . . . . 6 (0gβ€˜π‘„) = (0gβ€˜π‘„)
121, 11oppr0 20241 . . . . 5 (0gβ€˜π‘„) = (0gβ€˜(opprβ€˜π‘„))
1382idllidld 21101 . . . . . . 7 (πœ‘ β†’ 𝐼 ∈ (LIdealβ€˜π‘…))
14 lidlnsg 33033 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdealβ€˜π‘…)) β†’ 𝐼 ∈ (NrmSGrpβ€˜π‘…))
157, 13, 14syl2anc 583 . . . . . 6 (πœ‘ β†’ 𝐼 ∈ (NrmSGrpβ€˜π‘…))
164, 5, 6, 15opprqus0g 33073 . . . . 5 (πœ‘ β†’ (0gβ€˜(opprβ€˜π‘„)) = (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
1712, 16eqtrid 2776 . . . 4 (πœ‘ β†’ (0gβ€˜π‘„) = (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
1810, 17neeq12d 2994 . . 3 (πœ‘ β†’ ((1rβ€˜π‘„) β‰  (0gβ€˜π‘„) ↔ (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) β‰  (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))))
19 eqid 2724 . . . . . . 7 (Baseβ€˜π‘„) = (Baseβ€˜π‘„)
201, 19opprbas 20233 . . . . . 6 (Baseβ€˜π‘„) = (Baseβ€˜(opprβ€˜π‘„))
21 eqid 2724 . . . . . . . . 9 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
224, 21lidlss 21061 . . . . . . . 8 (𝐼 ∈ (LIdealβ€˜π‘…) β†’ 𝐼 βŠ† 𝐡)
2313, 22syl 17 . . . . . . 7 (πœ‘ β†’ 𝐼 βŠ† 𝐡)
244, 5, 6, 7, 23opprqusbas 33071 . . . . . 6 (πœ‘ β†’ (Baseβ€˜(opprβ€˜π‘„)) = (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
2520, 24eqtrid 2776 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘„) = (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
2617sneqd 4632 . . . . 5 (πœ‘ β†’ {(0gβ€˜π‘„)} = {(0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))})
2725, 26difeq12d 4115 . . . 4 (πœ‘ β†’ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)}) = ((Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) βˆ– {(0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))}))
2825adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) β†’ (Baseβ€˜π‘„) = (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
297ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ 𝑅 ∈ Ring)
308ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
31 simplr 766 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)}))
3231eldifad 3952 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ π‘₯ ∈ (Baseβ€˜π‘„))
33 simpr 484 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ 𝑦 ∈ (Baseβ€˜π‘„))
344, 5, 6, 29, 30, 19, 32, 33opprqusmulr 33074 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦))
3510ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ (1rβ€˜π‘„) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
3634, 35eqeq12d 2740 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ ((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ↔ (π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))))
374, 5, 6, 29, 30, 19, 33, 32opprqusmulr 33074 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯))
3837, 35eqeq12d 2740 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ ((𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„) ↔ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))))
3936, 38anbi12d 630 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) ∧ 𝑦 ∈ (Baseβ€˜π‘„)) β†’ (((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ∧ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„)) ↔ ((π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))))
4028, 39rexeqbidva 3320 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})) β†’ (βˆƒπ‘¦ ∈ (Baseβ€˜π‘„)((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ∧ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„)) ↔ βˆƒπ‘¦ ∈ (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))((π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))))
4127, 40raleqbidva 3319 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})βˆƒπ‘¦ ∈ (Baseβ€˜π‘„)((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ∧ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„)) ↔ βˆ€π‘₯ ∈ ((Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) βˆ– {(0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))})βˆƒπ‘¦ ∈ (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))((π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))))
4218, 41anbi12d 630 . 2 (πœ‘ β†’ (((1rβ€˜π‘„) β‰  (0gβ€˜π‘„) ∧ βˆ€π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})βˆƒπ‘¦ ∈ (Baseβ€˜π‘„)((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ∧ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„))) ↔ ((1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) β‰  (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ βˆ€π‘₯ ∈ ((Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) βˆ– {(0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))})βˆƒπ‘¦ ∈ (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))((π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))))))
43 eqid 2724 . . 3 (.rβ€˜(opprβ€˜π‘„)) = (.rβ€˜(opprβ€˜π‘„))
44 eqid 2724 . . . 4 (Unitβ€˜π‘„) = (Unitβ€˜π‘„)
4544, 1opprunit 20269 . . 3 (Unitβ€˜π‘„) = (Unitβ€˜(opprβ€˜π‘„))
46 eqid 2724 . . . . . 6 (2Idealβ€˜π‘…) = (2Idealβ€˜π‘…)
476, 46qusring 21122 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) β†’ 𝑄 ∈ Ring)
487, 8, 47syl2anc 583 . . . 4 (πœ‘ β†’ 𝑄 ∈ Ring)
491opprring 20239 . . . 4 (𝑄 ∈ Ring β†’ (opprβ€˜π‘„) ∈ Ring)
5048, 49syl 17 . . 3 (πœ‘ β†’ (opprβ€˜π‘„) ∈ Ring)
5120, 12, 3, 43, 45, 50isdrng4 32861 . 2 (πœ‘ β†’ ((opprβ€˜π‘„) ∈ DivRing ↔ ((1rβ€˜π‘„) β‰  (0gβ€˜π‘„) ∧ βˆ€π‘₯ ∈ ((Baseβ€˜π‘„) βˆ– {(0gβ€˜π‘„)})βˆƒπ‘¦ ∈ (Baseβ€˜π‘„)((π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (1rβ€˜π‘„) ∧ (𝑦(.rβ€˜(opprβ€˜π‘„))π‘₯) = (1rβ€˜π‘„)))))
52 eqid 2724 . . 3 (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) = (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))
53 eqid 2724 . . 3 (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) = (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))
54 eqid 2724 . . 3 (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))
55 eqid 2724 . . 3 (.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) = (.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))
56 eqid 2724 . . 3 (Unitβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) = (Unitβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))
575opprring 20239 . . . . 5 (𝑅 ∈ Ring β†’ 𝑂 ∈ Ring)
587, 57syl 17 . . . 4 (πœ‘ β†’ 𝑂 ∈ Ring)
595, 7oppr2idl 33069 . . . . 5 (πœ‘ β†’ (2Idealβ€˜π‘…) = (2Idealβ€˜π‘‚))
608, 59eleqtrd 2827 . . . 4 (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘‚))
61 eqid 2724 . . . . 5 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
62 eqid 2724 . . . . 5 (2Idealβ€˜π‘‚) = (2Idealβ€˜π‘‚)
6361, 62qusring 21122 . . . 4 ((𝑂 ∈ Ring ∧ 𝐼 ∈ (2Idealβ€˜π‘‚)) β†’ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6458, 60, 63syl2anc 583 . . 3 (πœ‘ β†’ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6552, 53, 54, 55, 56, 64isdrng4 32861 . 2 (πœ‘ β†’ ((𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing ↔ ((1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) β‰  (0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ βˆ€π‘₯ ∈ ((Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) βˆ– {(0gβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))})βˆƒπ‘¦ ∈ (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))((π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))π‘₯) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))))))
6642, 51, 653bitr4d 311 1 (πœ‘ β†’ ((opprβ€˜π‘„) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062   βˆ– cdif 3937   βŠ† wss 3940  {csn 4620  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  .rcmulr 17197  0gc0g 17384   /s cqus 17450  NrmSGrpcnsg 19038   ~QG cqg 19039  1rcur 20076  Ringcrg 20128  opprcoppr 20225  Unitcui 20247  DivRingcdr 20577  LIdealclidl 21055  2Idealc2idl 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17386  df-imas 17453  df-qus 17454  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-sbg 18858  df-subg 19040  df-nsg 19041  df-eqg 19042  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-subrg 20461  df-drng 20579  df-lmod 20698  df-lss 20769  df-sra 21011  df-rgmod 21012  df-lidl 21057  df-2idl 21097
This theorem is referenced by:  qsdrng  33080
  Copyright terms: Public domain W3C validator