Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusdrng Structured version   Visualization version   GIF version

Theorem opprqusdrng 33042
Description: The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (𝜑𝑅 ∈ Ring)
opprqus1r.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
opprqusdrng (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))

Proof of Theorem opprqusdrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . . . 6 (oppr𝑄) = (oppr𝑄)
2 eqid 2724 . . . . . 6 (1r𝑄) = (1r𝑄)
31, 2oppr1 20241 . . . . 5 (1r𝑄) = (1r‘(oppr𝑄))
4 opprqus.b . . . . . 6 𝐵 = (Base‘𝑅)
5 opprqus.o . . . . . 6 𝑂 = (oppr𝑅)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus1r.r . . . . . 6 (𝜑𝑅 ∈ Ring)
8 opprqus1r.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
94, 5, 6, 7, 8opprqus1r 33041 . . . . 5 (𝜑 → (1r‘(oppr𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
103, 9eqtrid 2776 . . . 4 (𝜑 → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
11 eqid 2724 . . . . . 6 (0g𝑄) = (0g𝑄)
121, 11oppr0 20240 . . . . 5 (0g𝑄) = (0g‘(oppr𝑄))
1382idllidld 21100 . . . . . . 7 (𝜑𝐼 ∈ (LIdeal‘𝑅))
14 lidlnsg 32999 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
157, 13, 14syl2anc 583 . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
164, 5, 6, 15opprqus0g 33039 . . . . 5 (𝜑 → (0g‘(oppr𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1712, 16eqtrid 2776 . . . 4 (𝜑 → (0g𝑄) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼))))
1810, 17neeq12d 2994 . . 3 (𝜑 → ((1r𝑄) ≠ (0g𝑄) ↔ (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))))
19 eqid 2724 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
201, 19opprbas 20232 . . . . . 6 (Base‘𝑄) = (Base‘(oppr𝑄))
21 eqid 2724 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
224, 21lidlss 21060 . . . . . . . 8 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼𝐵)
2313, 22syl 17 . . . . . . 7 (𝜑𝐼𝐵)
244, 5, 6, 7, 23opprqusbas 33037 . . . . . 6 (𝜑 → (Base‘(oppr𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2520, 24eqtrid 2776 . . . . 5 (𝜑 → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
2617sneqd 4632 . . . . 5 (𝜑 → {(0g𝑄)} = {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})
2725, 26difeq12d 4115 . . . 4 (𝜑 → ((Base‘𝑄) ∖ {(0g𝑄)}) = ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))}))
2825adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼))))
297ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑅 ∈ Ring)
308ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝐼 ∈ (2Ideal‘𝑅))
31 simplr 766 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
3231eldifad 3952 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑥 ∈ (Base‘𝑄))
33 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → 𝑦 ∈ (Base‘𝑄))
344, 5, 6, 29, 30, 19, 32, 33opprqusmulr 33040 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑥(.r‘(oppr𝑄))𝑦) = (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦))
3510ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (1r𝑄) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))
3634, 35eqeq12d 2740 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ↔ (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
374, 5, 6, 29, 30, 19, 33, 32opprqusmulr 33040 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (𝑦(.r‘(oppr𝑄))𝑥) = (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥))
3837, 35eqeq12d 2740 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → ((𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄) ↔ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))
3936, 38anbi12d 630 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) ∧ 𝑦 ∈ (Base‘𝑄)) → (((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4028, 39rexeqbidva 3320 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → (∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4127, 40raleqbidva 3319 . . 3 (𝜑 → (∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)) ↔ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))))))
4218, 41anbi12d 630 . 2 (𝜑 → (((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄))) ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
43 eqid 2724 . . 3 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
44 eqid 2724 . . . 4 (Unit‘𝑄) = (Unit‘𝑄)
4544, 1opprunit 20268 . . 3 (Unit‘𝑄) = (Unit‘(oppr𝑄))
46 eqid 2724 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
476, 46qusring 21121 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
487, 8, 47syl2anc 583 . . . 4 (𝜑𝑄 ∈ Ring)
491opprring 20238 . . . 4 (𝑄 ∈ Ring → (oppr𝑄) ∈ Ring)
5048, 49syl 17 . . 3 (𝜑 → (oppr𝑄) ∈ Ring)
5120, 12, 3, 43, 45, 50isdrng4 32827 . 2 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ ((1r𝑄) ≠ (0g𝑄) ∧ ∀𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})∃𝑦 ∈ (Base‘𝑄)((𝑥(.r‘(oppr𝑄))𝑦) = (1r𝑄) ∧ (𝑦(.r‘(oppr𝑄))𝑥) = (1r𝑄)))))
52 eqid 2724 . . 3 (Base‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))
53 eqid 2724 . . 3 (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))
54 eqid 2724 . . 3 (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))
55 eqid 2724 . . 3 (.r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (.r‘(𝑂 /s (𝑂 ~QG 𝐼)))
56 eqid 2724 . . 3 (Unit‘(𝑂 /s (𝑂 ~QG 𝐼))) = (Unit‘(𝑂 /s (𝑂 ~QG 𝐼)))
575opprring 20238 . . . . 5 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
587, 57syl 17 . . . 4 (𝜑𝑂 ∈ Ring)
595, 7oppr2idl 33035 . . . . 5 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
608, 59eleqtrd 2827 . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑂))
61 eqid 2724 . . . . 5 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
62 eqid 2724 . . . . 5 (2Ideal‘𝑂) = (2Ideal‘𝑂)
6361, 62qusring 21121 . . . 4 ((𝑂 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑂)) → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6458, 60, 63syl2anc 583 . . 3 (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ Ring)
6552, 53, 54, 55, 56, 64isdrng4 32827 . 2 (𝜑 → ((𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing ↔ ((1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ≠ (0g‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ ∀𝑥 ∈ ((Base‘(𝑂 /s (𝑂 ~QG 𝐼))) ∖ {(0g‘(𝑂 /s (𝑂 ~QG 𝐼)))})∃𝑦 ∈ (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))((𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼))) ∧ (𝑦(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑥) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))))))
6642, 51, 653bitr4d 311 1 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  cdif 3937  wss 3940  {csn 4620  cfv 6533  (class class class)co 7401  Basecbs 17142  .rcmulr 17196  0gc0g 17383   /s cqus 17449  NrmSGrpcnsg 19037   ~QG cqg 19038  1rcur 20075  Ringcrg 20127  opprcoppr 20224  Unitcui 20246  DivRingcdr 20576  LIdealclidl 21054  2Idealc2idl 21095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-ec 8700  df-qs 8704  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-0g 17385  df-imas 17452  df-qus 17453  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19039  df-nsg 19040  df-eqg 19041  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-subrg 20460  df-drng 20578  df-lmod 20697  df-lss 20768  df-sra 21010  df-rgmod 21011  df-lidl 21056  df-2idl 21096
This theorem is referenced by:  qsdrng  33046
  Copyright terms: Public domain W3C validator