Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
2 | 1 | 2ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
3 | 2 | 2ralimi 3087 |
. . . . . . 7
⊢
(∀𝑦 ∈
(Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
4 | 3 | adantl 481 |
. . . . . 6
⊢
((∃𝑔 ∈
(𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
5 | 4 | ralimi 3086 |
. . . . 5
⊢
(∀𝑥 ∈
(Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
7 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
8 | 7 | 2ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
9 | 8 | 2ralimi 3087 |
. . . . . . 7
⊢
(∀𝑦 ∈
(Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
10 | 9 | adantl 481 |
. . . . . 6
⊢
((∃𝑔 ∈
(𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
11 | 10 | ralimi 3086 |
. . . . 5
⊢
(∀𝑥 ∈
(Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
13 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) |
14 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) |
15 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑧∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) |
16 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) |
17 | | nfra1 3142 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑔∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) |
18 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) |
19 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
20 | 19 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = ℎ → ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
21 | 20 | cbvralvw 3372 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑔 ∈
(𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
22 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔)) |
23 | 22 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
24 | 23 | ralbidv 3120 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
25 | 21, 24 | syl5bb 282 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
26 | 17, 18, 25 | cbvralw 3363 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
27 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑤)) |
28 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐶)𝑤)) |
29 | 28 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) = (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔)) |
30 | | oveq2 7263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑤)) |
31 | 29, 30 | eleq12d 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
32 | 27, 31 | raleqbidv 3327 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
33 | 32 | ralbidv 3120 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑧)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
34 | 26, 33 | syl5bb 282 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
35 | 34 | cbvralvw 3372 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
(Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)) |
36 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑧)) |
37 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑦(Hom ‘𝐶)𝑤) = (𝑧(Hom ‘𝐶)𝑤)) |
38 | | opeq2 4802 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) |
39 | 38 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (〈𝑥, 𝑦〉(comp‘𝐶)𝑤) = (〈𝑥, 𝑧〉(comp‘𝐶)𝑤)) |
40 | 39 | oveqd 7272 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔)) |
41 | 40 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
42 | 37, 41 | raleqbidv 3327 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
43 | 36, 42 | raleqbidv 3327 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
44 | 43 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ℎ ∈ (𝑦(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
45 | 35, 44 | syl5bb 282 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))) |
46 | 15, 16, 45 | cbvralw 3363 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)) |
47 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
48 | | opeq1 4801 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑧〉 = 〈𝑦, 𝑧〉) |
49 | 48 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑧〉(comp‘𝐶)𝑤) = (〈𝑦, 𝑧〉(comp‘𝐶)𝑤)) |
50 | 49 | oveqd 7272 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) = (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)) |
51 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥(Hom ‘𝐶)𝑤) = (𝑦(Hom ‘𝐶)𝑤)) |
52 | 50, 51 | eleq12d 2833 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
53 | 52 | ralbidv 3120 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
54 | 47, 53 | raleqbidv 3327 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
55 | 54 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
56 | | ralcom 3280 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
(Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) |
57 | 55, 56 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
58 | 57 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
59 | 46, 58 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))) |
60 | 13, 14, 59 | cbvralw 3363 |
. . . . . . 7
⊢
(∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) |
61 | 60 | biimpi 215 |
. . . . . 6
⊢
(∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) |
62 | 61 | ancri 549 |
. . . . 5
⊢
(∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
63 | | r19.26 3094 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
64 | | r19.26 3094 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
(Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
65 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑔 ∈
(𝑦(Hom ‘𝐶)𝑧)(∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) |
66 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(Base‘𝐶) =
(Base‘𝐶) |
67 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
68 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(comp‘𝐶) =
(comp‘𝐶) |
69 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(comp‘𝐷) =
(comp‘𝐷) |
70 | | catpropd.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
72 | 71 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
73 | 72 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
74 | | catpropd.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
75 | 74 | ad5antr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) →
(compf‘𝐶) = (compf‘𝐷)) |
76 | 75 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) →
(compf‘𝐶) = (compf‘𝐷)) |
77 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
78 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑥 ∈ (Base‘𝐶)) |
79 | 78 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑥 ∈ (Base‘𝐶)) |
80 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦 ∈ (Base‘𝐶)) |
81 | 80 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑦 ∈ (Base‘𝐶)) |
82 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑤 ∈ (Base‘𝐶)) |
83 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
84 | 83 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
85 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) |
86 | 66, 67, 68, 69, 73, 76, 79, 81, 82, 84, 85 | comfeqval 17334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓)) |
87 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧 ∈ (Base‘𝐶)) |
88 | 87 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑧 ∈ (Base‘𝐶)) |
89 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
90 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) |
91 | 66, 67, 68, 69, 73, 76, 79, 88, 82, 89, 90 | comfeqval 17334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
92 | 86, 91 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((((((𝜑 ∧
𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) |
93 | 92 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → (((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
94 | 93 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
95 | | ralbi 3092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∀ℎ ∈
(𝑧(Hom ‘𝐶)𝑤)(((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) |
96 | 94, 95 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
97 | 96 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → ∀𝑤 ∈ (Base‘𝐶)(∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
98 | 97 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑤 ∈ (Base‘𝐶)(∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
99 | 98 | impr 454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → ∀𝑤 ∈ (Base‘𝐶)(∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) |
100 | | ralbi 3092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑤 ∈
(Base‘𝐶)(∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) → (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) |
102 | 101 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
103 | 102 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
104 | 103 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
105 | 65, 104 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
106 | 105 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
107 | | ralbi 3092 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑔 ∈
(𝑦(Hom ‘𝐶)𝑧)(((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
108 | 106, 107 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
109 | 108 | an32s 648 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
110 | 109 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
111 | | ralbi 3092 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑓 ∈
(𝑥(Hom ‘𝐶)𝑦)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
112 | 110, 111 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
113 | 112 | expimpd 453 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
114 | 113 | ralimdva 3102 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑧 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
115 | | ralbi 3092 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
(Base‘𝐶)(∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
116 | 114, 115 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
117 | 64, 116 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
118 | 117 | ralimdva 3102 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
119 | | ralbi 3092 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
(Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
120 | 118, 119 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
121 | 63, 120 | syl5bir 242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
122 | 121 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
123 | 122 | an4s 656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) |
124 | 123 | anbi2d 628 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
125 | 124 | expr 456 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))))) |
126 | 125 | ralimdva 3102 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑥 ∈ (Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))))) |
127 | 126 | expimpd 453 |
. . . . 5
⊢ (𝜑 → ((∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)(ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑥 ∈ (Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))))) |
128 | | ralbi 3092 |
. . . . 5
⊢
(∀𝑥 ∈
(Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))) → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
129 | 62, 127, 128 | syl56 36 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))))))) |
130 | 6, 12, 129 | pm5.21ndd 380 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
131 | 70 | homfeqbas 17322 |
. . . 4
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
132 | | eqid 2738 |
. . . . . . 7
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
133 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
134 | 66, 67, 132, 71, 133, 133 | homfeqval 17323 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥)) |
135 | 131 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (Base‘𝐶) = (Base‘𝐷)) |
136 | 71 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
137 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
138 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
139 | 66, 67, 132, 136, 137, 138 | homfeqval 17323 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥)) |
140 | 70 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
141 | 74 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) →
(compf‘𝐶) = (compf‘𝐷)) |
142 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶)) |
143 | | simp-4r 780 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶)) |
144 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
145 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) |
146 | 66, 67, 68, 69, 140, 141, 142, 143, 143, 144, 145 | comfeqval 17334 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = (𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓)) |
147 | 146 | eqeq1d 2740 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓)) |
148 | 139, 147 | raleqbidva 3345 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓)) |
149 | 66, 67, 132, 136, 138, 137 | homfeqval 17323 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
150 | 70 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
151 | 74 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
152 | | simp-4r 780 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
153 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
154 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) |
155 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
156 | 66, 67, 68, 69, 150, 151, 152, 152, 153, 154, 155 | comfeqval 17334 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = (𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔)) |
157 | 156 | eqeq1d 2740 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)) |
158 | 149, 157 | raleqbidva 3345 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓)) |
159 | 148, 158 | anbi12d 630 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
160 | 135, 159 | raleqbidva 3345 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
161 | 134, 160 | rexeqbidva 3346 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓))) |
162 | 131 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷)) |
163 | 162 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷)) |
164 | 71 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
165 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
166 | 66, 67, 132, 164, 77, 165 | homfeqval 17323 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
167 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶)) |
168 | 66, 67, 132, 164, 165, 167 | homfeqval 17323 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧)) |
169 | 168 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧)) |
170 | | simpr 484 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
171 | 66, 67, 68, 69, 72, 75, 78, 80, 87, 83, 170 | comfeqval 17334 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
172 | 66, 67, 132, 164, 77, 167 | homfeqval 17323 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐷)𝑧)) |
173 | 172 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐷)𝑧)) |
174 | 171, 173 | eleq12d 2833 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧))) |
175 | 162 | ad4antr 728 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (Base‘𝐶) = (Base‘𝐷)) |
176 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
177 | | simp-4r 780 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶)) |
178 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶)) |
179 | 66, 67, 132, 176, 177, 178 | homfeqval 17323 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (𝑧(Hom ‘𝐶)𝑤) = (𝑧(Hom ‘𝐷)𝑤)) |
180 | 164 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
181 | 74 | ad7antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) →
(compf‘𝐶) = (compf‘𝐷)) |
182 | 165 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑦 ∈ (Base‘𝐶)) |
183 | 167 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧 ∈ (Base‘𝐶)) |
184 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤 ∈ (Base‘𝐶)) |
185 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
186 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) |
187 | 66, 67, 68, 69, 180, 181, 182, 183, 184, 185, 186 | comfeqval 17334 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔) = (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)) |
188 | 187 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = ((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓)) |
189 | 77 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑥 ∈ (Base‘𝐶)) |
190 | | simp-4r 780 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
191 | 66, 67, 68, 69, 180, 181, 189, 182, 183, 190, 185 | comfeqval 17334 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
192 | 191 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))) |
193 | 188, 192 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))) |
194 | 179, 193 | raleqbidva 3345 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))) |
195 | 175, 194 | raleqbidva 3345 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))) |
196 | 174, 195 | anbi12d 630 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))))) |
197 | 169, 196 | raleqbidva 3345 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))))) |
198 | 166, 197 | raleqbidva 3345 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))))) |
199 | 163, 198 | raleqbidva 3345 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))))) |
200 | 162, 199 | raleqbidva 3345 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))))) |
201 | 161, 200 | anbi12d 630 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))))) |
202 | 131, 201 | raleqbidva 3345 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))))) |
203 | 130, 202 | bitrd 278 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))))) |
204 | | catpropd.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
205 | 66, 67, 68 | iscat 17298 |
. . 3
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
206 | 204, 205 | syl 17 |
. 2
⊢ (𝜑 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)))))) |
207 | | catpropd.4 |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
208 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
209 | 208, 132,
69 | iscat 17298 |
. . 3
⊢ (𝐷 ∈ 𝑊 → (𝐷 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))))) |
210 | 207, 209 | syl 17 |
. 2
⊢ (𝜑 → (𝐷 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)((ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐷)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐷)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)))))) |
211 | 203, 206,
210 | 3bitr4d 310 |
1
⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |