MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpcom Structured version   Visualization version   GIF version

Theorem perpcom 28739
Description: The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpcom (𝜑𝐵(⟂G‘𝐺)𝐴)

Proof of Theorem perpcom
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perpcom.1 . 2 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 incom 4230 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32a1i 11 . . . 4 (𝜑 → (𝐴𝐵) = (𝐵𝐴))
4 ralcom 3295 . . . . 5 (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
5 isperp.p . . . . . . . 8 𝑃 = (Base‘𝐺)
6 isperp.d . . . . . . . 8 = (dist‘𝐺)
7 isperp.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
8 isperp.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
9 eqid 2740 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
10 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
1110ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
12 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
1312ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
14 simplrr 777 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
155, 8, 7, 11, 13, 14tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
16 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
1716elin1d 4227 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
185, 8, 7, 11, 13, 17tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
19 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
2019ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
21 simplrl 776 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
225, 8, 7, 11, 20, 21tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
23 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
245, 6, 7, 8, 9, 11, 15, 18, 22, 23ragcom 28724 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
2510ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
2619ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
27 simplrl 776 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
285, 8, 7, 25, 26, 27tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
2912ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
30 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
3130elin1d 4227 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
325, 8, 7, 25, 29, 31tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
33 simplrr 777 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
345, 8, 7, 25, 29, 33tglnpt 28575 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
35 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
365, 6, 7, 8, 9, 25, 28, 32, 34, 35ragcom 28724 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3724, 36impbida 800 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
38372ralbidva 3225 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
394, 38bitrid 283 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
403, 39rexeqbidva 3341 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
415, 6, 7, 8, 10, 12, 19isperp 28738 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
425, 6, 7, 8, 10, 19, 12isperp 28738 . . 3 (𝜑 → (𝐵(⟂G‘𝐺)𝐴 ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
4340, 41, 423bitr4d 311 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵𝐵(⟂G‘𝐺)𝐴))
441, 43mpbid 232 1 (𝜑𝐵(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975   class class class wbr 5166  ran crn 5701  cfv 6573  ⟨“cs3 14891  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  pInvGcmir 28678  ∟Gcrag 28719  ⟂Gcperpg 28721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-mir 28679  df-rag 28720  df-perpg 28722
This theorem is referenced by:  hlperpnel  28751  colperpexlem3  28758  mideulem2  28760  midex  28763  opphllem5  28777  opphllem6  28778  opphl  28780  lmieu  28810  lnperpex  28829  trgcopy  28830
  Copyright terms: Public domain W3C validator