MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpcom Structured version   Visualization version   GIF version

Theorem perpcom 28397
Description: The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpcom (𝜑𝐵(⟂G‘𝐺)𝐴)

Proof of Theorem perpcom
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perpcom.1 . 2 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 incom 4201 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32a1i 11 . . . 4 (𝜑 → (𝐴𝐵) = (𝐵𝐴))
4 ralcom 3285 . . . . 5 (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
5 isperp.p . . . . . . . 8 𝑃 = (Base‘𝐺)
6 isperp.d . . . . . . . 8 = (dist‘𝐺)
7 isperp.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
8 isperp.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
9 eqid 2731 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
10 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
1110ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
12 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
1312ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
14 simplrr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
155, 8, 7, 11, 13, 14tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
16 simpllr 773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
1716elin1d 4198 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
185, 8, 7, 11, 13, 17tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
19 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
2019ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
21 simplrl 774 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
225, 8, 7, 11, 20, 21tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
23 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
245, 6, 7, 8, 9, 11, 15, 18, 22, 23ragcom 28382 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
2510ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
2619ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
27 simplrl 774 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
285, 8, 7, 25, 26, 27tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
2912ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
30 simpllr 773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
3130elin1d 4198 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
325, 8, 7, 25, 29, 31tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
33 simplrr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
345, 8, 7, 25, 29, 33tglnpt 28233 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
35 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
365, 6, 7, 8, 9, 25, 28, 32, 34, 35ragcom 28382 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3724, 36impbida 798 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
38372ralbidva 3215 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
394, 38bitrid 283 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
403, 39rexeqbidva 3327 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
415, 6, 7, 8, 10, 12, 19isperp 28396 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
425, 6, 7, 8, 10, 19, 12isperp 28396 . . 3 (𝜑 → (𝐵(⟂G‘𝐺)𝐴 ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
4340, 41, 423bitr4d 311 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵𝐵(⟂G‘𝐺)𝐴))
441, 43mpbid 231 1 (𝜑𝐵(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cin 3947   class class class wbr 5148  ran crn 5677  cfv 6543  ⟨“cs3 14800  Basecbs 17151  distcds 17213  TarskiGcstrkg 28111  Itvcitv 28117  LineGclng 28118  pInvGcmir 28336  ∟Gcrag 28377  ⟂Gcperpg 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553  df-s2 14806  df-s3 14807  df-trkgc 28132  df-trkgb 28133  df-trkgcb 28134  df-trkg 28137  df-mir 28337  df-rag 28378  df-perpg 28380
This theorem is referenced by:  hlperpnel  28409  colperpexlem3  28416  mideulem2  28418  midex  28421  opphllem5  28435  opphllem6  28436  opphl  28438  lmieu  28468  lnperpex  28487  trgcopy  28488
  Copyright terms: Public domain W3C validator