MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpcom Structured version   Visualization version   GIF version

Theorem perpcom 26493
Description: The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpcom (𝜑𝐵(⟂G‘𝐺)𝐴)

Proof of Theorem perpcom
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perpcom.1 . 2 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 incom 4177 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32a1i 11 . . . 4 (𝜑 → (𝐴𝐵) = (𝐵𝐴))
4 ralcom 3354 . . . . 5 (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
5 isperp.p . . . . . . . 8 𝑃 = (Base‘𝐺)
6 isperp.d . . . . . . . 8 = (dist‘𝐺)
7 isperp.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
8 isperp.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
9 eqid 2821 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
10 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
1110ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
12 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
1312ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
14 simplrr 776 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
155, 8, 7, 11, 13, 14tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
16 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
1716elin1d 4174 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
185, 8, 7, 11, 13, 17tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
19 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
2019ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
21 simplrl 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
225, 8, 7, 11, 20, 21tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
23 simpr 487 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
245, 6, 7, 8, 9, 11, 15, 18, 22, 23ragcom 26478 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
2510ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
2619ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
27 simplrl 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
285, 8, 7, 25, 26, 27tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
2912ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
30 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
3130elin1d 4174 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
325, 8, 7, 25, 29, 31tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
33 simplrr 776 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
345, 8, 7, 25, 29, 33tglnpt 26329 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
35 simpr 487 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
365, 6, 7, 8, 9, 25, 28, 32, 34, 35ragcom 26478 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3724, 36impbida 799 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
38372ralbidva 3198 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
394, 38syl5bb 285 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
403, 39rexeqbidva 3426 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
415, 6, 7, 8, 10, 12, 19isperp 26492 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
425, 6, 7, 8, 10, 19, 12isperp 26492 . . 3 (𝜑 → (𝐵(⟂G‘𝐺)𝐴 ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
4340, 41, 423bitr4d 313 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵𝐵(⟂G‘𝐺)𝐴))
441, 43mpbid 234 1 (𝜑𝐵(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3934   class class class wbr 5058  ran crn 5550  cfv 6349  ⟨“cs3 14198  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  LineGclng 26217  pInvGcmir 26432  ∟Gcrag 26473  ⟂Gcperpg 26475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-mir 26433  df-rag 26474  df-perpg 26476
This theorem is referenced by:  hlperpnel  26505  colperpexlem3  26512  mideulem2  26514  midex  26517  opphllem5  26531  opphllem6  26532  opphl  26534  lmieu  26564  lnperpex  26583  trgcopy  26584
  Copyright terms: Public domain W3C validator