MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd2 Structured version   Visualization version   GIF version

Theorem bnd2 9795
Description: A variant of the Boundedness Axiom bnd 9794 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
bnd2.1 𝐴 ∈ V
Assertion
Ref Expression
bnd2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
Distinct variable groups:   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3058 . . . 4 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
21ralbii 3079 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑))
3 bnd2.1 . . . 4 𝐴 ∈ V
4 raleq 3290 . . . . 5 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦(𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑)))
5 raleq 3290 . . . . . 6 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
65exbidv 1922 . . . . 5 (𝑣 = 𝐴 → (∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
74, 6imbi12d 344 . . . 4 (𝑣 = 𝐴 → ((∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑)) ↔ (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))))
8 bnd 9794 . . . 4 (∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑))
93, 7, 8vtocl 3512 . . 3 (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
102, 9sylbi 217 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
11 vex 3441 . . . . 5 𝑤 ∈ V
1211inex1 5259 . . . 4 (𝑤𝐵) ∈ V
13 inss2 4187 . . . . . . 7 (𝑤𝐵) ⊆ 𝐵
14 sseq1 3956 . . . . . . 7 (𝑧 = (𝑤𝐵) → (𝑧𝐵 ↔ (𝑤𝐵) ⊆ 𝐵))
1513, 14mpbiri 258 . . . . . 6 (𝑧 = (𝑤𝐵) → 𝑧𝐵)
1615biantrurd 532 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ (𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑)))
17 rexeq 3289 . . . . . . 7 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤𝐵)𝜑))
18 rexin 4199 . . . . . . 7 (∃𝑦 ∈ (𝑤𝐵)𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑))
1917, 18bitrdi 287 . . . . . 6 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑)))
2019ralbidv 3156 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2116, 20bitr3d 281 . . . 4 (𝑧 = (𝑤𝐵) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2212, 21spcev 3557 . . 3 (∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2322exlimiv 1931 . 2 (∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2410, 23syl 17 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-reg 9487  ax-inf2 9540
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-r1 9666  df-rank 9667
This theorem is referenced by:  ac6s  10384  bnd2d  49809
  Copyright terms: Public domain W3C validator