| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnd2 | Structured version Visualization version GIF version | ||
| Description: A variant of the Boundedness Axiom bnd 9852 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| bnd2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bnd2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 2 | 1 | ralbii 3076 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 3 | bnd2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | raleq 3298 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 5 | raleq 3298 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 5 | exbidv 1921 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝐴 → ((∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
| 8 | bnd 9852 | . . . 4 ⊢ (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 9 | 3, 7, 8 | vtocl 3527 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 11 | vex 3454 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 12 | 11 | inex1 5275 | . . . 4 ⊢ (𝑤 ∩ 𝐵) ∈ V |
| 13 | inss2 4204 | . . . . . . 7 ⊢ (𝑤 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | sseq1 3975 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (𝑧 ⊆ 𝐵 ↔ (𝑤 ∩ 𝐵) ⊆ 𝐵)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → 𝑧 ⊆ 𝐵) |
| 16 | 15 | biantrurd 532 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑))) |
| 17 | rexeq 3297 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑)) | |
| 18 | rexin 4216 | . . . . . . 7 ⊢ (∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 20 | 19 | ralbidv 3157 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 21 | 16, 20 | bitr3d 281 | . . . 4 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 22 | 12, 21 | spcev 3575 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 23 | 22 | exlimiv 1930 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 24 | 10, 23 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: ac6s 10444 bnd2d 49674 |
| Copyright terms: Public domain | W3C validator |