![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnd2 | Structured version Visualization version GIF version |
Description: A variant of the Boundedness Axiom bnd 9930 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
bnd2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnd2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
2 | 1 | ralbii 3091 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
3 | bnd2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | raleq 3321 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) | |
5 | raleq 3321 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
6 | 5 | exbidv 1919 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝐴 → ((∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
8 | bnd 9930 | . . . 4 ⊢ (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
9 | 3, 7, 8 | vtocl 3558 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
10 | 2, 9 | sylbi 217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
11 | vex 3482 | . . . . 5 ⊢ 𝑤 ∈ V | |
12 | 11 | inex1 5323 | . . . 4 ⊢ (𝑤 ∩ 𝐵) ∈ V |
13 | inss2 4246 | . . . . . . 7 ⊢ (𝑤 ∩ 𝐵) ⊆ 𝐵 | |
14 | sseq1 4021 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (𝑧 ⊆ 𝐵 ↔ (𝑤 ∩ 𝐵) ⊆ 𝐵)) | |
15 | 13, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → 𝑧 ⊆ 𝐵) |
16 | 15 | biantrurd 532 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑))) |
17 | rexeq 3320 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑)) | |
18 | rexin 4256 | . . . . . . 7 ⊢ (∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
19 | 17, 18 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
20 | 19 | ralbidv 3176 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
21 | 16, 20 | bitr3d 281 | . . . 4 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
22 | 12, 21 | spcev 3606 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
23 | 22 | exlimiv 1928 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
24 | 10, 23 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 |
This theorem is referenced by: ac6s 10522 bnd2d 48912 |
Copyright terms: Public domain | W3C validator |