MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd2 Structured version   Visualization version   GIF version

Theorem bnd2 9830
Description: A variant of the Boundedness Axiom bnd 9829 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
bnd2.1 𝐴 ∈ V
Assertion
Ref Expression
bnd2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
Distinct variable groups:   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3075 . . . 4 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
21ralbii 3097 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑))
3 bnd2.1 . . . 4 𝐴 ∈ V
4 raleq 3310 . . . . 5 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦(𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑)))
5 raleq 3310 . . . . . 6 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
65exbidv 1925 . . . . 5 (𝑣 = 𝐴 → (∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
74, 6imbi12d 345 . . . 4 (𝑣 = 𝐴 → ((∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑)) ↔ (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))))
8 bnd 9829 . . . 4 (∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑))
93, 7, 8vtocl 3519 . . 3 (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
102, 9sylbi 216 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
11 vex 3450 . . . . 5 𝑤 ∈ V
1211inex1 5275 . . . 4 (𝑤𝐵) ∈ V
13 inss2 4190 . . . . . . 7 (𝑤𝐵) ⊆ 𝐵
14 sseq1 3970 . . . . . . 7 (𝑧 = (𝑤𝐵) → (𝑧𝐵 ↔ (𝑤𝐵) ⊆ 𝐵))
1513, 14mpbiri 258 . . . . . 6 (𝑧 = (𝑤𝐵) → 𝑧𝐵)
1615biantrurd 534 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ (𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑)))
17 rexeq 3311 . . . . . . 7 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤𝐵)𝜑))
18 rexin 4200 . . . . . . 7 (∃𝑦 ∈ (𝑤𝐵)𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑))
1917, 18bitrdi 287 . . . . . 6 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑)))
2019ralbidv 3175 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2116, 20bitr3d 281 . . . 4 (𝑧 = (𝑤𝐵) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2212, 21spcev 3566 . . 3 (∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2322exlimiv 1934 . 2 (∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2410, 23syl 17 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3065  wrex 3074  Vcvv 3446  cin 3910  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-reg 9529  ax-inf2 9578
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-r1 9701  df-rank 9702
This theorem is referenced by:  ac6s  10421  bnd2d  47133
  Copyright terms: Public domain W3C validator