![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnd2 | Structured version Visualization version GIF version |
Description: A variant of the Boundedness Axiom bnd 9829 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
bnd2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnd2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3075 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
2 | 1 | ralbii 3097 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
3 | bnd2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | raleq 3310 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) | |
5 | raleq 3310 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
6 | 5 | exbidv 1925 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
7 | 4, 6 | imbi12d 345 | . . . 4 ⊢ (𝑣 = 𝐴 → ((∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
8 | bnd 9829 | . . . 4 ⊢ (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
9 | 3, 7, 8 | vtocl 3519 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
10 | 2, 9 | sylbi 216 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
11 | vex 3450 | . . . . 5 ⊢ 𝑤 ∈ V | |
12 | 11 | inex1 5275 | . . . 4 ⊢ (𝑤 ∩ 𝐵) ∈ V |
13 | inss2 4190 | . . . . . . 7 ⊢ (𝑤 ∩ 𝐵) ⊆ 𝐵 | |
14 | sseq1 3970 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (𝑧 ⊆ 𝐵 ↔ (𝑤 ∩ 𝐵) ⊆ 𝐵)) | |
15 | 13, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → 𝑧 ⊆ 𝐵) |
16 | 15 | biantrurd 534 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑))) |
17 | rexeq 3311 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑)) | |
18 | rexin 4200 | . . . . . . 7 ⊢ (∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
19 | 17, 18 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
20 | 19 | ralbidv 3175 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
21 | 16, 20 | bitr3d 281 | . . . 4 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
22 | 12, 21 | spcev 3566 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
23 | 22 | exlimiv 1934 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
24 | 10, 23 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3065 ∃wrex 3074 Vcvv 3446 ∩ cin 3910 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9529 ax-inf2 9578 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-r1 9701 df-rank 9702 |
This theorem is referenced by: ac6s 10421 bnd2d 47133 |
Copyright terms: Public domain | W3C validator |