| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnd2 | Structured version Visualization version GIF version | ||
| Description: A variant of the Boundedness Axiom bnd 9906 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| bnd2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bnd2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3061 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 2 | 1 | ralbii 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 3 | bnd2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | raleq 3302 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 5 | raleq 3302 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 5 | exbidv 1921 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝐴 → ((∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
| 8 | bnd 9906 | . . . 4 ⊢ (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 9 | 3, 7, 8 | vtocl 3537 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 12 | 11 | inex1 5287 | . . . 4 ⊢ (𝑤 ∩ 𝐵) ∈ V |
| 13 | inss2 4213 | . . . . . . 7 ⊢ (𝑤 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | sseq1 3984 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (𝑧 ⊆ 𝐵 ↔ (𝑤 ∩ 𝐵) ⊆ 𝐵)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → 𝑧 ⊆ 𝐵) |
| 16 | 15 | biantrurd 532 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑))) |
| 17 | rexeq 3301 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑)) | |
| 18 | rexin 4225 | . . . . . . 7 ⊢ (∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 20 | 19 | ralbidv 3163 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 21 | 16, 20 | bitr3d 281 | . . . 4 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 22 | 12, 21 | spcev 3585 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 23 | 22 | exlimiv 1930 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 24 | 10, 23 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: ac6s 10498 bnd2d 49545 |
| Copyright terms: Public domain | W3C validator |