| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnd2 | Structured version Visualization version GIF version | ||
| Description: A variant of the Boundedness Axiom bnd 9785 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| bnd2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bnd2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 2 | 1 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 3 | bnd2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | raleq 3289 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 5 | raleq 3289 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 5 | exbidv 1922 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑣 = 𝐴 → ((∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
| 8 | bnd 9785 | . . . 4 ⊢ (∀𝑥 ∈ 𝑣 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 9 | 3, 7, 8 | vtocl 3513 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 12 | 11 | inex1 5255 | . . . 4 ⊢ (𝑤 ∩ 𝐵) ∈ V |
| 13 | inss2 4188 | . . . . . . 7 ⊢ (𝑤 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | sseq1 3960 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (𝑧 ⊆ 𝐵 ↔ (𝑤 ∩ 𝐵) ⊆ 𝐵)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → 𝑧 ⊆ 𝐵) |
| 16 | 15 | biantrurd 532 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑))) |
| 17 | rexeq 3288 | . . . . . . 7 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑)) | |
| 18 | rexin 4200 | . . . . . . 7 ⊢ (∃𝑦 ∈ (𝑤 ∩ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 20 | 19 | ralbidv 3155 | . . . . 5 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 21 | 16, 20 | bitr3d 281 | . . . 4 ⊢ (𝑧 = (𝑤 ∩ 𝐵) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 22 | 12, 21 | spcev 3561 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 23 | 22 | exlimiv 1931 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑤 (𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| 24 | 10, 23 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: ac6s 10375 bnd2d 49719 |
| Copyright terms: Public domain | W3C validator |