MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wefrc Structured version   Visualization version   GIF version

Theorem wefrc 5614
Description: A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
wefrc (( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem wefrc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wess 5607 . . 3 (𝐵𝐴 → ( E We 𝐴 → E We 𝐵))
2 n0 4293 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
3 ineq2 4153 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
43eqeq1d 2738 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐵𝑥) = ∅ ↔ (𝐵𝑦) = ∅))
54rspcev 3570 . . . . . . . . 9 ((𝑦𝐵 ∧ (𝐵𝑦) = ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
65ex 413 . . . . . . . 8 (𝑦𝐵 → ((𝐵𝑦) = ∅ → ∃𝑥𝐵 (𝐵𝑥) = ∅))
76adantl 482 . . . . . . 7 (( E We 𝐵𝑦𝐵) → ((𝐵𝑦) = ∅ → ∃𝑥𝐵 (𝐵𝑥) = ∅))
8 inss1 4175 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
9 wefr 5610 . . . . . . . . . . . . 13 ( E We 𝐵 → E Fr 𝐵)
10 vex 3445 . . . . . . . . . . . . . . 15 𝑦 ∈ V
1110inex2 5262 . . . . . . . . . . . . . 14 (𝐵𝑦) ∈ V
1211epfrc 5606 . . . . . . . . . . . . 13 (( E Fr 𝐵 ∧ (𝐵𝑦) ⊆ 𝐵 ∧ (𝐵𝑦) ≠ ∅) → ∃𝑥 ∈ (𝐵𝑦)((𝐵𝑦) ∩ 𝑥) = ∅)
139, 12syl3an1 1162 . . . . . . . . . . . 12 (( E We 𝐵 ∧ (𝐵𝑦) ⊆ 𝐵 ∧ (𝐵𝑦) ≠ ∅) → ∃𝑥 ∈ (𝐵𝑦)((𝐵𝑦) ∩ 𝑥) = ∅)
14133exp 1118 . . . . . . . . . . 11 ( E We 𝐵 → ((𝐵𝑦) ⊆ 𝐵 → ((𝐵𝑦) ≠ ∅ → ∃𝑥 ∈ (𝐵𝑦)((𝐵𝑦) ∩ 𝑥) = ∅)))
158, 14mpi 20 . . . . . . . . . 10 ( E We 𝐵 → ((𝐵𝑦) ≠ ∅ → ∃𝑥 ∈ (𝐵𝑦)((𝐵𝑦) ∩ 𝑥) = ∅))
16 rexin 4186 . . . . . . . . . 10 (∃𝑥 ∈ (𝐵𝑦)((𝐵𝑦) ∩ 𝑥) = ∅ ↔ ∃𝑥𝐵 (𝑥𝑦 ∧ ((𝐵𝑦) ∩ 𝑥) = ∅))
1715, 16syl6ib 250 . . . . . . . . 9 ( E We 𝐵 → ((𝐵𝑦) ≠ ∅ → ∃𝑥𝐵 (𝑥𝑦 ∧ ((𝐵𝑦) ∩ 𝑥) = ∅)))
1817adantr 481 . . . . . . . 8 (( E We 𝐵𝑦𝐵) → ((𝐵𝑦) ≠ ∅ → ∃𝑥𝐵 (𝑥𝑦 ∧ ((𝐵𝑦) ∩ 𝑥) = ∅)))
19 elin 3914 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐵𝑥) ↔ (𝑧𝐵𝑧𝑥))
20 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐵𝑧𝐵𝑥𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑥𝐵))
21 3anrot 1099 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐵𝑧𝐵𝑥𝐵) ↔ (𝑧𝐵𝑥𝐵𝑦𝐵))
2220, 21bitr3i 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝐵𝑧𝐵) ∧ 𝑥𝐵) ↔ (𝑧𝐵𝑥𝐵𝑦𝐵))
23 wetrep 5613 . . . . . . . . . . . . . . . . . . . . . . 23 (( E We 𝐵 ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → ((𝑧𝑥𝑥𝑦) → 𝑧𝑦))
2423expd 416 . . . . . . . . . . . . . . . . . . . . . 22 (( E We 𝐵 ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧𝑥 → (𝑥𝑦𝑧𝑦)))
2522, 24sylan2b 594 . . . . . . . . . . . . . . . . . . . . 21 (( E We 𝐵 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑥𝐵)) → (𝑧𝑥 → (𝑥𝑦𝑧𝑦)))
2625exp44 438 . . . . . . . . . . . . . . . . . . . 20 ( E We 𝐵 → (𝑦𝐵 → (𝑧𝐵 → (𝑥𝐵 → (𝑧𝑥 → (𝑥𝑦𝑧𝑦))))))
2726imp 407 . . . . . . . . . . . . . . . . . . 19 (( E We 𝐵𝑦𝐵) → (𝑧𝐵 → (𝑥𝐵 → (𝑧𝑥 → (𝑥𝑦𝑧𝑦)))))
2827com34 91 . . . . . . . . . . . . . . . . . 18 (( E We 𝐵𝑦𝐵) → (𝑧𝐵 → (𝑧𝑥 → (𝑥𝐵 → (𝑥𝑦𝑧𝑦)))))
2928impd 411 . . . . . . . . . . . . . . . . 17 (( E We 𝐵𝑦𝐵) → ((𝑧𝐵𝑧𝑥) → (𝑥𝐵 → (𝑥𝑦𝑧𝑦))))
3019, 29biimtrid 241 . . . . . . . . . . . . . . . 16 (( E We 𝐵𝑦𝐵) → (𝑧 ∈ (𝐵𝑥) → (𝑥𝐵 → (𝑥𝑦𝑧𝑦))))
3130imp4a 423 . . . . . . . . . . . . . . 15 (( E We 𝐵𝑦𝐵) → (𝑧 ∈ (𝐵𝑥) → ((𝑥𝐵𝑥𝑦) → 𝑧𝑦)))
3231com23 86 . . . . . . . . . . . . . 14 (( E We 𝐵𝑦𝐵) → ((𝑥𝐵𝑥𝑦) → (𝑧 ∈ (𝐵𝑥) → 𝑧𝑦)))
3332ralrimdv 3145 . . . . . . . . . . . . 13 (( E We 𝐵𝑦𝐵) → ((𝑥𝐵𝑥𝑦) → ∀𝑧 ∈ (𝐵𝑥)𝑧𝑦))
34 dfss3 3920 . . . . . . . . . . . . 13 ((𝐵𝑥) ⊆ 𝑦 ↔ ∀𝑧 ∈ (𝐵𝑥)𝑧𝑦)
3533, 34syl6ibr 251 . . . . . . . . . . . 12 (( E We 𝐵𝑦𝐵) → ((𝑥𝐵𝑥𝑦) → (𝐵𝑥) ⊆ 𝑦))
36 dfss 3916 . . . . . . . . . . . . . . 15 ((𝐵𝑥) ⊆ 𝑦 ↔ (𝐵𝑥) = ((𝐵𝑥) ∩ 𝑦))
37 in32 4168 . . . . . . . . . . . . . . . 16 ((𝐵𝑥) ∩ 𝑦) = ((𝐵𝑦) ∩ 𝑥)
3837eqeq2i 2749 . . . . . . . . . . . . . . 15 ((𝐵𝑥) = ((𝐵𝑥) ∩ 𝑦) ↔ (𝐵𝑥) = ((𝐵𝑦) ∩ 𝑥))
3936, 38sylbb 218 . . . . . . . . . . . . . 14 ((𝐵𝑥) ⊆ 𝑦 → (𝐵𝑥) = ((𝐵𝑦) ∩ 𝑥))
4039eqeq1d 2738 . . . . . . . . . . . . 13 ((𝐵𝑥) ⊆ 𝑦 → ((𝐵𝑥) = ∅ ↔ ((𝐵𝑦) ∩ 𝑥) = ∅))
4140biimprd 247 . . . . . . . . . . . 12 ((𝐵𝑥) ⊆ 𝑦 → (((𝐵𝑦) ∩ 𝑥) = ∅ → (𝐵𝑥) = ∅))
4235, 41syl6 35 . . . . . . . . . . 11 (( E We 𝐵𝑦𝐵) → ((𝑥𝐵𝑥𝑦) → (((𝐵𝑦) ∩ 𝑥) = ∅ → (𝐵𝑥) = ∅)))
4342expd 416 . . . . . . . . . 10 (( E We 𝐵𝑦𝐵) → (𝑥𝐵 → (𝑥𝑦 → (((𝐵𝑦) ∩ 𝑥) = ∅ → (𝐵𝑥) = ∅))))
4443imp4a 423 . . . . . . . . 9 (( E We 𝐵𝑦𝐵) → (𝑥𝐵 → ((𝑥𝑦 ∧ ((𝐵𝑦) ∩ 𝑥) = ∅) → (𝐵𝑥) = ∅)))
4544reximdvai 3158 . . . . . . . 8 (( E We 𝐵𝑦𝐵) → (∃𝑥𝐵 (𝑥𝑦 ∧ ((𝐵𝑦) ∩ 𝑥) = ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅))
4618, 45syld 47 . . . . . . 7 (( E We 𝐵𝑦𝐵) → ((𝐵𝑦) ≠ ∅ → ∃𝑥𝐵 (𝐵𝑥) = ∅))
477, 46pm2.61dne 3028 . . . . . 6 (( E We 𝐵𝑦𝐵) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
4847ex 413 . . . . 5 ( E We 𝐵 → (𝑦𝐵 → ∃𝑥𝐵 (𝐵𝑥) = ∅))
4948exlimdv 1935 . . . 4 ( E We 𝐵 → (∃𝑦 𝑦𝐵 → ∃𝑥𝐵 (𝐵𝑥) = ∅))
502, 49biimtrid 241 . . 3 ( E We 𝐵 → (𝐵 ≠ ∅ → ∃𝑥𝐵 (𝐵𝑥) = ∅))
511, 50syl6com 37 . 2 ( E We 𝐴 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵 (𝐵𝑥) = ∅)))
52513imp 1110 1 (( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2940  wral 3061  wrex 3070  cin 3897  wss 3898  c0 4269   E cep 5523   Fr wfr 5572   We wwe 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577
This theorem is referenced by:  tz7.5  6323  onnseq  8245  finminlem  34603
  Copyright terms: Public domain W3C validator