Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaindm | Structured version Visualization version GIF version |
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
Ref | Expression |
---|---|
imaindm | ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
2 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | breldm 5806 | . . . . . 6 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
4 | 3 | pm4.71ri 560 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
5 | 4 | rexbii 3177 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
6 | rexin 4170 | . . . 4 ⊢ (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | |
7 | 5, 6 | bitr4i 277 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
8 | 2 | elima 5963 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
9 | 2 | elima 5963 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅))) |
11 | 10 | eqriv 2735 | 1 ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 class class class wbr 5070 dom cdm 5580 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: madeval2 33964 |
Copyright terms: Public domain | W3C validator |