MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaindm Structured version   Visualization version   GIF version

Theorem imaindm 6247
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
imaindm (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))

Proof of Theorem imaindm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . 7 𝑦 ∈ V
2 vex 3440 . . . . . . 7 𝑥 ∈ V
31, 2breldm 5851 . . . . . 6 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
43pm4.71ri 560 . . . . 5 (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
54rexbii 3076 . . . 4 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
6 rexin 4201 . . . 4 (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
75, 6bitr4i 278 . . 3 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
82elima 6016 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
92elima 6016 . . 3 (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
107, 8, 93bitr4i 303 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)))
1110eqriv 2726 1 (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3902   class class class wbr 5092  dom cdm 5619  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  madeval2  27763
  Copyright terms: Public domain W3C validator