MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaindm Structured version   Visualization version   GIF version

Theorem imaindm 6298
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
imaindm (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))

Proof of Theorem imaindm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . . . 7 𝑦 ∈ V
2 vex 3478 . . . . . . 7 𝑥 ∈ V
31, 2breldm 5908 . . . . . 6 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
43pm4.71ri 561 . . . . 5 (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
54rexbii 3094 . . . 4 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
6 rexin 4239 . . . 4 (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
75, 6bitr4i 277 . . 3 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
82elima 6064 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
92elima 6064 . . 3 (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
107, 8, 93bitr4i 302 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)))
1110eqriv 2729 1 (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  wrex 3070  cin 3947   class class class wbr 5148  dom cdm 5676  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  madeval2  27345
  Copyright terms: Public domain W3C validator