|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imaindm | Structured version Visualization version GIF version | ||
| Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| imaindm | ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 3484 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 2 | vex 3484 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | breldm 5919 | . . . . . 6 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) | 
| 4 | 3 | pm4.71ri 560 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | 
| 5 | 4 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | 
| 6 | rexin 4250 | . . . 4 ⊢ (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) | 
| 8 | 2 | elima 6083 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) | 
| 9 | 2 | elima 6083 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) | 
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅))) | 
| 11 | 10 | eqriv 2734 | 1 ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∩ cin 3950 class class class wbr 5143 dom cdm 5685 “ cima 5688 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 | 
| This theorem is referenced by: madeval2 27892 | 
| Copyright terms: Public domain | W3C validator |