|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imaindm | Structured version Visualization version GIF version | ||
| Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| imaindm | ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 3483 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 2 | vex 3483 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | breldm 5918 | . . . . . 6 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) | 
| 4 | 3 | pm4.71ri 560 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | 
| 5 | 4 | rexbii 3093 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | 
| 6 | rexin 4249 | . . . 4 ⊢ (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) | 
| 8 | 2 | elima 6082 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) | 
| 9 | 2 | elima 6082 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) | 
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅))) | 
| 11 | 10 | eqriv 2733 | 1 ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∩ cin 3949 class class class wbr 5142 dom cdm 5684 “ cima 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: madeval2 27893 | 
| Copyright terms: Public domain | W3C validator |