![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaindm | Structured version Visualization version GIF version |
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
Ref | Expression |
---|---|
imaindm | ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
2 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | breldm 5908 | . . . . . 6 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
4 | 3 | pm4.71ri 561 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
5 | 4 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) |
6 | rexin 4239 | . . . 4 ⊢ (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦 ∈ 𝐴 (𝑦 ∈ dom 𝑅 ∧ 𝑦𝑅𝑥)) | |
7 | 5, 6 | bitr4i 277 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
8 | 2 | elima 6064 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
9 | 2 | elima 6064 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥) |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅))) |
11 | 10 | eqriv 2729 | 1 ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∩ cin 3947 class class class wbr 5148 dom cdm 5676 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: madeval2 27345 |
Copyright terms: Public domain | W3C validator |