MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subislly Structured version   Visualization version   GIF version

Theorem subislly 22540
Description: The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
subislly ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐵,𝑥,𝑦   𝑢,𝐽,𝑥,𝑦   𝑢,𝑉,𝑥,𝑦

Proof of Theorem subislly
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttop 22219 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝐽t 𝐵) ∈ Top)
2 islly 22527 . . . 4 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
32baib 535 . . 3 ((𝐽t 𝐵) ∈ Top → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
41, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
5 vex 3426 . . . . 5 𝑥 ∈ V
65inex1 5236 . . . 4 (𝑥𝐵) ∈ V
76a1i 11 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑥𝐽) → (𝑥𝐵) ∈ V)
8 elrest 17055 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑧 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐵)))
9 simpr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝑧 = (𝑥𝐵))
109raleqdv 3339 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
11 rexin 4170 . . . . . 6 (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
12 vex 3426 . . . . . . . . 9 𝑢 ∈ V
1312inex1 5236 . . . . . . . 8 (𝑢𝐵) ∈ V
1413a1i 11 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑢𝐽) → (𝑢𝐵) ∈ V)
15 elrest 17055 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
1615ad2antrr 722 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
17 3anass 1093 . . . . . . . 8 ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
18 simpr 484 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑤 = (𝑢𝐵))
19 simpllr 772 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑧 = (𝑥𝐵))
2018, 19sseq12d 3950 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤𝑧 ↔ (𝑢𝐵) ⊆ (𝑥𝐵)))
21 velpw 4535 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
22 inss2 4160 . . . . . . . . . . . 12 (𝑢𝐵) ⊆ 𝐵
2322biantru 529 . . . . . . . . . . 11 ((𝑢𝐵) ⊆ 𝑥 ↔ ((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵))
24 ssin 4161 . . . . . . . . . . 11 (((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵) ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2523, 24bitri 274 . . . . . . . . . 10 ((𝑢𝐵) ⊆ 𝑥 ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2620, 21, 253bitr4g 313 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢𝐵) ⊆ 𝑥))
2718eleq2d 2824 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦 ∈ (𝑢𝐵)))
28 simplr 765 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦 ∈ (𝑥𝐵))
2928elin2d 4129 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦𝐵)
3029biantrud 531 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢 ↔ (𝑦𝑢𝑦𝐵)))
31 elin 3899 . . . . . . . . . . 11 (𝑦 ∈ (𝑢𝐵) ↔ (𝑦𝑢𝑦𝐵))
3230, 31bitr4di 288 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢𝑦 ∈ (𝑢𝐵)))
3327, 32bitr4d 281 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦𝑢))
3418oveq2d 7271 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = ((𝐽t 𝐵) ↾t (𝑢𝐵)))
35 simp-4l 779 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐽 ∈ Top)
3622a1i 11 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑢𝐵) ⊆ 𝐵)
37 simplr 765 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝐵𝑉)
3837ad2antrr 722 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐵𝑉)
39 restabs 22224 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑢𝐵) ⊆ 𝐵𝐵𝑉) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4035, 36, 38, 39syl3anc 1369 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4134, 40eqtrd 2778 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = (𝐽t (𝑢𝐵)))
4241eleq1d 2823 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽t (𝑢𝐵)) ∈ 𝐴))
4326, 33, 423anbi123d 1434 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4417, 43bitr3id 284 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4514, 16, 44rexxfr2d 5329 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4611, 45syl5bb 282 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4746ralbidva 3119 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4810, 47bitrd 278 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
497, 8, 48ralxfr2d 5328 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
504, 49bitrd 278 1 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  (class class class)co 7255  t crest 17048  Topctop 21950  Locally clly 22523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-bases 22004  df-lly 22525
This theorem is referenced by:  iccllysconn  33112
  Copyright terms: Public domain W3C validator