Step | Hyp | Ref
| Expression |
1 | | resttop 22057 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝐽 ↾t 𝐵) ∈ Top) |
2 | | islly 22365 |
. . . 4
⊢ ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽 ↾t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
3 | 2 | baib 539 |
. . 3
⊢ ((𝐽 ↾t 𝐵) ∈ Top → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
4 | 1, 3 | syl 17 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
5 | | vex 3412 |
. . . . 5
⊢ 𝑥 ∈ V |
6 | 5 | inex1 5210 |
. . . 4
⊢ (𝑥 ∩ 𝐵) ∈ V |
7 | 6 | a1i 11 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐵) ∈ V) |
8 | | elrest 16932 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝑧 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐵))) |
9 | | simpr 488 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → 𝑧 = (𝑥 ∩ 𝐵)) |
10 | 9 | raleqdv 3325 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
11 | | rexin 4154 |
. . . . . 6
⊢
(∃𝑤 ∈
((𝐽 ↾t
𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽 ↾t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
12 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
13 | 12 | inex1 5210 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝐵) ∈ V |
14 | 13 | a1i 11 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝐵) ∈ V) |
15 | | elrest 16932 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝑤 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝑤 = (𝑢 ∩ 𝐵))) |
16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (𝑤 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝑤 = (𝑢 ∩ 𝐵))) |
17 | | 3anass 1097 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝒫 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
18 | | simpr 488 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑤 = (𝑢 ∩ 𝐵)) |
19 | | simpllr 776 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑧 = (𝑥 ∩ 𝐵)) |
20 | 18, 19 | sseq12d 3934 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑤 ⊆ 𝑧 ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵))) |
21 | | velpw 4518 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧) |
22 | | inss2 4144 |
. . . . . . . . . . . 12
⊢ (𝑢 ∩ 𝐵) ⊆ 𝐵 |
23 | 22 | biantru 533 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵)) |
24 | | ssin 4145 |
. . . . . . . . . . 11
⊢ (((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵)) |
25 | 23, 24 | bitri 278 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵)) |
26 | 20, 21, 25 | 3bitr4g 317 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢 ∩ 𝐵) ⊆ 𝑥)) |
27 | 18 | eleq2d 2823 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (𝑢 ∩ 𝐵))) |
28 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑦 ∈ (𝑥 ∩ 𝐵)) |
29 | 28 | elin2d 4113 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑦 ∈ 𝐵) |
30 | 29 | biantrud 535 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑢 ↔ (𝑦 ∈ 𝑢 ∧ 𝑦 ∈ 𝐵))) |
31 | | elin 3882 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝑢 ∩ 𝐵) ↔ (𝑦 ∈ 𝑢 ∧ 𝑦 ∈ 𝐵)) |
32 | 30, 31 | bitr4di 292 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑢 ∩ 𝐵))) |
33 | 27, 32 | bitr4d 285 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑢)) |
34 | 18 | oveq2d 7229 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t 𝑤) = ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵))) |
35 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝐽 ∈ Top) |
36 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑢 ∩ 𝐵) ⊆ 𝐵) |
37 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → 𝐵 ∈ 𝑉) |
38 | 37 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝐵 ∈ 𝑉) |
39 | | restabs 22062 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵)) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
40 | 35, 36, 38, 39 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵)) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
41 | 34, 40 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t 𝑤) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
42 | 41 | eleq1d 2822 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴)) |
43 | 26, 33, 42 | 3anbi123d 1438 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
44 | 17, 43 | bitr3id 288 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
45 | 14, 16, 44 | rexxfr2d 5304 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (∃𝑤 ∈ (𝐽 ↾t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
46 | 11, 45 | syl5bb 286 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
47 | 46 | ralbidva 3117 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
48 | 10, 47 | bitrd 282 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
49 | 7, 8, 48 | ralxfr2d 5303 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
50 | 4, 49 | bitrd 282 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |