Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subislly Structured version   Visualization version   GIF version

Theorem subislly 22096
 Description: The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
subislly ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐵,𝑥,𝑦   𝑢,𝐽,𝑥,𝑦   𝑢,𝑉,𝑥,𝑦

Proof of Theorem subislly
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttop 21775 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝐽t 𝐵) ∈ Top)
2 islly 22083 . . . 4 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
32baib 539 . . 3 ((𝐽t 𝐵) ∈ Top → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
41, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
5 vex 3444 . . . . 5 𝑥 ∈ V
65inex1 5186 . . . 4 (𝑥𝐵) ∈ V
76a1i 11 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑥𝐽) → (𝑥𝐵) ∈ V)
8 elrest 16696 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑧 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐵)))
9 simpr 488 . . . . 5 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝑧 = (𝑥𝐵))
109raleqdv 3364 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
11 rexin 4166 . . . . . 6 (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
12 vex 3444 . . . . . . . . 9 𝑢 ∈ V
1312inex1 5186 . . . . . . . 8 (𝑢𝐵) ∈ V
1413a1i 11 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑢𝐽) → (𝑢𝐵) ∈ V)
15 elrest 16696 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
1615ad2antrr 725 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
17 3anass 1092 . . . . . . . 8 ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
18 simpr 488 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑤 = (𝑢𝐵))
19 simpllr 775 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑧 = (𝑥𝐵))
2018, 19sseq12d 3948 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤𝑧 ↔ (𝑢𝐵) ⊆ (𝑥𝐵)))
21 velpw 4502 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
22 inss2 4156 . . . . . . . . . . . 12 (𝑢𝐵) ⊆ 𝐵
2322biantru 533 . . . . . . . . . . 11 ((𝑢𝐵) ⊆ 𝑥 ↔ ((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵))
24 ssin 4157 . . . . . . . . . . 11 (((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵) ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2523, 24bitri 278 . . . . . . . . . 10 ((𝑢𝐵) ⊆ 𝑥 ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2620, 21, 253bitr4g 317 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢𝐵) ⊆ 𝑥))
2718eleq2d 2875 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦 ∈ (𝑢𝐵)))
28 simplr 768 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦 ∈ (𝑥𝐵))
2928elin2d 4126 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦𝐵)
3029biantrud 535 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢 ↔ (𝑦𝑢𝑦𝐵)))
31 elin 3897 . . . . . . . . . . 11 (𝑦 ∈ (𝑢𝐵) ↔ (𝑦𝑢𝑦𝐵))
3230, 31bitr4di 292 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢𝑦 ∈ (𝑢𝐵)))
3327, 32bitr4d 285 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦𝑢))
3418oveq2d 7152 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = ((𝐽t 𝐵) ↾t (𝑢𝐵)))
35 simp-4l 782 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐽 ∈ Top)
3622a1i 11 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑢𝐵) ⊆ 𝐵)
37 simplr 768 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝐵𝑉)
3837ad2antrr 725 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐵𝑉)
39 restabs 21780 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑢𝐵) ⊆ 𝐵𝐵𝑉) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4035, 36, 38, 39syl3anc 1368 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4134, 40eqtrd 2833 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = (𝐽t (𝑢𝐵)))
4241eleq1d 2874 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽t (𝑢𝐵)) ∈ 𝐴))
4326, 33, 423anbi123d 1433 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4417, 43bitr3id 288 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4514, 16, 44rexxfr2d 5278 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4611, 45syl5bb 286 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4746ralbidva 3161 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4810, 47bitrd 282 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
497, 8, 48ralxfr2d 5277 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
504, 49bitrd 282 1 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∩ cin 3880   ⊆ wss 3881  𝒫 cpw 4497  (class class class)co 7136   ↾t crest 16689  Topctop 21508  Locally clly 22079 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-oadd 8092  df-er 8275  df-en 8496  df-fin 8499  df-fi 8862  df-rest 16691  df-topgen 16712  df-top 21509  df-bases 21561  df-lly 22081 This theorem is referenced by:  iccllysconn  32625
 Copyright terms: Public domain W3C validator