MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subislly Structured version   Visualization version   GIF version

Theorem subislly 23476
Description: The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
subislly ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐵,𝑥,𝑦   𝑢,𝐽,𝑥,𝑦   𝑢,𝑉,𝑥,𝑦

Proof of Theorem subislly
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttop 23155 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝐽t 𝐵) ∈ Top)
2 islly 23463 . . . 4 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
32baib 534 . . 3 ((𝐽t 𝐵) ∈ Top → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
41, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
5 vex 3466 . . . . 5 𝑥 ∈ V
65inex1 5322 . . . 4 (𝑥𝐵) ∈ V
76a1i 11 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑥𝐽) → (𝑥𝐵) ∈ V)
8 elrest 17442 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑧 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐵)))
9 simpr 483 . . . . 5 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝑧 = (𝑥𝐵))
109raleqdv 3315 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
11 rexin 4241 . . . . . 6 (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
12 vex 3466 . . . . . . . . 9 𝑢 ∈ V
1312inex1 5322 . . . . . . . 8 (𝑢𝐵) ∈ V
1413a1i 11 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑢𝐽) → (𝑢𝐵) ∈ V)
15 elrest 17442 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
1615ad2antrr 724 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
17 3anass 1092 . . . . . . . 8 ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
18 simpr 483 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑤 = (𝑢𝐵))
19 simpllr 774 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑧 = (𝑥𝐵))
2018, 19sseq12d 4013 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤𝑧 ↔ (𝑢𝐵) ⊆ (𝑥𝐵)))
21 velpw 4612 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
22 inss2 4231 . . . . . . . . . . . 12 (𝑢𝐵) ⊆ 𝐵
2322biantru 528 . . . . . . . . . . 11 ((𝑢𝐵) ⊆ 𝑥 ↔ ((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵))
24 ssin 4232 . . . . . . . . . . 11 (((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵) ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2523, 24bitri 274 . . . . . . . . . 10 ((𝑢𝐵) ⊆ 𝑥 ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2620, 21, 253bitr4g 313 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢𝐵) ⊆ 𝑥))
2718eleq2d 2812 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦 ∈ (𝑢𝐵)))
28 simplr 767 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦 ∈ (𝑥𝐵))
2928elin2d 4200 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦𝐵)
3029biantrud 530 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢 ↔ (𝑦𝑢𝑦𝐵)))
31 elin 3963 . . . . . . . . . . 11 (𝑦 ∈ (𝑢𝐵) ↔ (𝑦𝑢𝑦𝐵))
3230, 31bitr4di 288 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢𝑦 ∈ (𝑢𝐵)))
3327, 32bitr4d 281 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦𝑢))
3418oveq2d 7440 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = ((𝐽t 𝐵) ↾t (𝑢𝐵)))
35 simp-4l 781 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐽 ∈ Top)
3622a1i 11 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑢𝐵) ⊆ 𝐵)
37 simplr 767 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝐵𝑉)
3837ad2antrr 724 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐵𝑉)
39 restabs 23160 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑢𝐵) ⊆ 𝐵𝐵𝑉) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4035, 36, 38, 39syl3anc 1368 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4134, 40eqtrd 2766 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = (𝐽t (𝑢𝐵)))
4241eleq1d 2811 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽t (𝑢𝐵)) ∈ 𝐴))
4326, 33, 423anbi123d 1433 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4417, 43bitr3id 284 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4514, 16, 44rexxfr2d 5415 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4611, 45bitrid 282 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4746ralbidva 3166 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4810, 47bitrd 278 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
497, 8, 48ralxfr2d 5414 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
504, 49bitrd 278 1 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  cin 3946  wss 3947  𝒫 cpw 4607  (class class class)co 7424  t crest 17435  Topctop 22886  Locally clly 23459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-en 8975  df-fin 8978  df-fi 9454  df-rest 17437  df-topgen 17458  df-top 22887  df-bases 22940  df-lly 23461
This theorem is referenced by:  iccllysconn  35078
  Copyright terms: Public domain W3C validator