| Step | Hyp | Ref
| Expression |
| 1 | | resttop 23168 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝐽 ↾t 𝐵) ∈ Top) |
| 2 | | islly 23476 |
. . . 4
⊢ ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽 ↾t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 3 | 2 | baib 535 |
. . 3
⊢ ((𝐽 ↾t 𝐵) ∈ Top → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 5 | | vex 3484 |
. . . . 5
⊢ 𝑥 ∈ V |
| 6 | 5 | inex1 5317 |
. . . 4
⊢ (𝑥 ∩ 𝐵) ∈ V |
| 7 | 6 | a1i 11 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐵) ∈ V) |
| 8 | | elrest 17472 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝑧 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐵))) |
| 9 | | simpr 484 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → 𝑧 = (𝑥 ∩ 𝐵)) |
| 10 | 9 | raleqdv 3326 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 11 | | rexin 4250 |
. . . . . 6
⊢
(∃𝑤 ∈
((𝐽 ↾t
𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽 ↾t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 12 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
| 13 | 12 | inex1 5317 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝐵) ∈ V |
| 14 | 13 | a1i 11 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝐵) ∈ V) |
| 15 | | elrest 17472 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (𝑤 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝑤 = (𝑢 ∩ 𝐵))) |
| 16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (𝑤 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝑤 = (𝑢 ∩ 𝐵))) |
| 17 | | 3anass 1095 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝒫 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴))) |
| 18 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑤 = (𝑢 ∩ 𝐵)) |
| 19 | | simpllr 776 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑧 = (𝑥 ∩ 𝐵)) |
| 20 | 18, 19 | sseq12d 4017 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑤 ⊆ 𝑧 ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵))) |
| 21 | | velpw 4605 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧) |
| 22 | | inss2 4238 |
. . . . . . . . . . . 12
⊢ (𝑢 ∩ 𝐵) ⊆ 𝐵 |
| 23 | 22 | biantru 529 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵)) |
| 24 | | ssin 4239 |
. . . . . . . . . . 11
⊢ (((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵)) |
| 25 | 23, 24 | bitri 275 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ↔ (𝑢 ∩ 𝐵) ⊆ (𝑥 ∩ 𝐵)) |
| 26 | 20, 21, 25 | 3bitr4g 314 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢 ∩ 𝐵) ⊆ 𝑥)) |
| 27 | 18 | eleq2d 2827 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (𝑢 ∩ 𝐵))) |
| 28 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑦 ∈ (𝑥 ∩ 𝐵)) |
| 29 | 28 | elin2d 4205 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝑦 ∈ 𝐵) |
| 30 | 29 | biantrud 531 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑢 ↔ (𝑦 ∈ 𝑢 ∧ 𝑦 ∈ 𝐵))) |
| 31 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝑢 ∩ 𝐵) ↔ (𝑦 ∈ 𝑢 ∧ 𝑦 ∈ 𝐵)) |
| 32 | 30, 31 | bitr4di 289 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑢 ∩ 𝐵))) |
| 33 | 27, 32 | bitr4d 282 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑢)) |
| 34 | 18 | oveq2d 7447 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t 𝑤) = ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵))) |
| 35 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝐽 ∈ Top) |
| 36 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (𝑢 ∩ 𝐵) ⊆ 𝐵) |
| 37 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → 𝐵 ∈ 𝑉) |
| 38 | 37 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → 𝐵 ∈ 𝑉) |
| 39 | | restabs 23173 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵)) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
| 40 | 35, 36, 38, 39 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t (𝑢 ∩ 𝐵)) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
| 41 | 34, 40 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝐽 ↾t 𝐵) ↾t 𝑤) = (𝐽 ↾t (𝑢 ∩ 𝐵))) |
| 42 | 41 | eleq1d 2826 |
. . . . . . . . 9
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → (((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴)) |
| 43 | 26, 33, 42 | 3anbi123d 1438 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 44 | 17, 43 | bitr3id 285 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) ∧ 𝑤 = (𝑢 ∩ 𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 45 | 14, 16, 44 | rexxfr2d 5411 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (∃𝑤 ∈ (𝐽 ↾t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 46 | 11, 45 | bitrid 283 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) ∧ 𝑦 ∈ (𝑥 ∩ 𝐵)) → (∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 47 | 46 | ralbidva 3176 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 48 | 10, 47 | bitrd 279 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 49 | 7, 8, 48 | ralxfr2d 5410 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → (∀𝑧 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑧 ∃𝑤 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑧)(𝑦 ∈ 𝑤 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |
| 50 | 4, 49 | bitrd 279 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) |