MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxp Structured version   Visualization version   GIF version

Theorem elidinxp 5997
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxp (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elidinxp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 risset 3221 . . . . 5 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑥)
21anbi2ci 625 . . . 4 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
3 r19.42v 3187 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
4 opeq2 4831 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
54equcoms 2023 . . . . . . . 8 (𝑦 = 𝑥 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
65eqeq2d 2747 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = ⟨𝑥, 𝑥⟩ ↔ 𝐶 = ⟨𝑥, 𝑦⟩))
76pm5.32ri 576 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
8 vex 3449 . . . . . . . . 9 𝑦 ∈ V
98ideq 5808 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
10 df-br 5106 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
11 equcom 2021 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
129, 10, 113bitr3i 300 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑦 = 𝑥)
1312anbi2i 623 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
147, 13bitr4i 277 . . . . 5 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1514rexbii 3097 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
162, 3, 153bitr2i 298 . . 3 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1716rexbii 3097 . 2 (∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 rexin 4199 . 2 (∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩))
19 elinxp 5975 . 2 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2017, 18, 193bitr4ri 303 1 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  cin 3909  cop 4592   class class class wbr 5105   I cid 5530   × cxp 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640
This theorem is referenced by:  elidinxpid  5998  elrid  5999  idinxpres  6000
  Copyright terms: Public domain W3C validator