MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxp Structured version   Visualization version   GIF version

Theorem elidinxp 5999
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxp (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elidinxp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 risset 3204 . . . . 5 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑥)
21anbi2ci 625 . . . 4 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
3 r19.42v 3161 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
4 opeq2 4828 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
54equcoms 2020 . . . . . . . 8 (𝑦 = 𝑥 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
65eqeq2d 2740 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = ⟨𝑥, 𝑥⟩ ↔ 𝐶 = ⟨𝑥, 𝑦⟩))
76pm5.32ri 575 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
8 vex 3442 . . . . . . . . 9 𝑦 ∈ V
98ideq 5799 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
10 df-br 5096 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
11 equcom 2018 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
129, 10, 113bitr3i 301 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑦 = 𝑥)
1312anbi2i 623 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
147, 13bitr4i 278 . . . . 5 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1514rexbii 3076 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
162, 3, 153bitr2i 299 . . 3 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1716rexbii 3076 . 2 (∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 rexin 4203 . 2 (∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩))
19 elinxp 5974 . 2 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2017, 18, 193bitr4ri 304 1 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3904  cop 4585   class class class wbr 5095   I cid 5517   × cxp 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630
This theorem is referenced by:  elidinxpid  6000  elrid  6001  idinxpres  6002
  Copyright terms: Public domain W3C validator