MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxp Structured version   Visualization version   GIF version

Theorem elidinxp 5634
Description: Characterization of elements of the intersection of identity relation with Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxp (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elidinxp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 risset 3209 . . . . 5 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑥)
21anbi2ci 618 . . . 4 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
3 r19.42v 3239 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
4 opeq2 4562 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
54equcoms 2117 . . . . . . . 8 (𝑦 = 𝑥 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
65eqeq2d 2775 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = ⟨𝑥, 𝑥⟩ ↔ 𝐶 = ⟨𝑥, 𝑦⟩))
76pm5.32ri 571 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
8 vex 3353 . . . . . . . . 9 𝑦 ∈ V
98ideq 5445 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
10 df-br 4812 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
11 equcom 2115 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
129, 10, 113bitr3i 292 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑦 = 𝑥)
1312anbi2i 616 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
147, 13bitr4i 269 . . . . 5 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1514rexbii 3188 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
162, 3, 153bitr2i 290 . . 3 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1716rexbii 3188 . 2 (∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 rexin 4005 . 2 (∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩))
19 elinxp 5611 . 2 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2017, 18, 193bitr4ri 295 1 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wcel 2155  wrex 3056  cin 3733  cop 4342   class class class wbr 4811   I cid 5186   × cxp 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-id 5187  df-xp 5285  df-rel 5286
This theorem is referenced by:  elidinxpid  5635  elrid  5636
  Copyright terms: Public domain W3C validator