MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxp Structured version   Visualization version   GIF version

Theorem elidinxp 5993
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxp (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elidinxp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 risset 3207 . . . . 5 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑥)
21anbi2ci 625 . . . 4 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
3 r19.42v 3164 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
4 opeq2 4826 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
54equcoms 2021 . . . . . . . 8 (𝑦 = 𝑥 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
65eqeq2d 2742 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = ⟨𝑥, 𝑥⟩ ↔ 𝐶 = ⟨𝑥, 𝑦⟩))
76pm5.32ri 575 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
8 vex 3440 . . . . . . . . 9 𝑦 ∈ V
98ideq 5792 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
10 df-br 5092 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
11 equcom 2019 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
129, 10, 113bitr3i 301 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑦 = 𝑥)
1312anbi2i 623 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
147, 13bitr4i 278 . . . . 5 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1514rexbii 3079 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
162, 3, 153bitr2i 299 . . 3 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1716rexbii 3079 . 2 (∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 rexin 4200 . 2 (∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩))
19 elinxp 5968 . 2 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2017, 18, 193bitr4ri 304 1 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3901  cop 4582   class class class wbr 5091   I cid 5510   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623
This theorem is referenced by:  elidinxpid  5994  elrid  5995  idinxpres  5996
  Copyright terms: Public domain W3C validator