Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfin Structured version   Visualization version   GIF version

Theorem pcmplfin 33821
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfin ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem pcmplfin
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5329 . . . . . 6 ((𝑈𝐽𝐽 ∈ Paracomp) → 𝑈 ∈ V)
21ancoms 458 . . . . 5 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽) → 𝑈 ∈ V)
323adant3 1131 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ V)
4 simp2 1136 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈𝐽)
53, 4elpwd 4611 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ 𝒫 𝐽)
6 ispcmp 33818 . . . . . 6 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
7 pcmplfin.x . . . . . . 7 𝑋 = 𝐽
87iscref 33805 . . . . . 6 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
96, 8bitri 275 . . . . 5 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
109simprbi 496 . . . 4 (𝐽 ∈ Paracomp → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
11103ad2ant1 1132 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
12 simp3 1137 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑋 = 𝑈)
13 unieq 4923 . . . . . 6 (𝑢 = 𝑈 𝑢 = 𝑈)
1413eqeq2d 2746 . . . . 5 (𝑢 = 𝑈 → (𝑋 = 𝑢𝑋 = 𝑈))
15 breq2 5152 . . . . . 6 (𝑢 = 𝑈 → (𝑣Ref𝑢𝑣Ref𝑈))
1615rexbidv 3177 . . . . 5 (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))
1714, 16imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
1817rspcv 3618 . . 3 (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
195, 11, 12, 18syl3c 66 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)
20 rexin 4256 . 2 (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
2119, 20sylib 218 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  cfv 6563  Topctop 22915  Refcref 23526  LocFinclocfin 23528  CovHasRefccref 33803  Paracompcpcmp 33816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-cref 33804  df-pcmp 33817
This theorem is referenced by:  pcmplfinf  33822
  Copyright terms: Public domain W3C validator