Step | Hyp | Ref
| Expression |
1 | | ssexg 5242 |
. . . . . 6
⊢ ((𝑈 ⊆ 𝐽 ∧ 𝐽 ∈ Paracomp) → 𝑈 ∈ V) |
2 | 1 | ancoms 458 |
. . . . 5
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽) → 𝑈 ∈ V) |
3 | 2 | 3adant3 1130 |
. . . 4
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ∈ V) |
4 | | simp2 1135 |
. . . 4
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ⊆ 𝐽) |
5 | 3, 4 | elpwd 4538 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ∈ 𝒫 𝐽) |
6 | | ispcmp 31709 |
. . . . . 6
⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈
CovHasRef(LocFin‘𝐽)) |
7 | | pcmplfin.x |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
8 | 7 | iscref 31696 |
. . . . . 6
⊢ (𝐽 ∈
CovHasRef(LocFin‘𝐽)
↔ (𝐽 ∈ Top ∧
∀𝑢 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))) |
9 | 6, 8 | bitri 274 |
. . . . 5
⊢ (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))) |
10 | 9 | simprbi 496 |
. . . 4
⊢ (𝐽 ∈ Paracomp →
∀𝑢 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)) |
11 | 10 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)) |
12 | | simp3 1136 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑋 = ∪ 𝑈) |
13 | | unieq 4847 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ∪ 𝑢 = ∪
𝑈) |
14 | 13 | eqeq2d 2749 |
. . . . 5
⊢ (𝑢 = 𝑈 → (𝑋 = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑈)) |
15 | | breq2 5074 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝑣Ref𝑢 ↔ 𝑣Ref𝑈)) |
16 | 15 | rexbidv 3225 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)) |
17 | 14, 16 | imbi12d 344 |
. . . 4
⊢ (𝑢 = 𝑈 → ((𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = ∪ 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))) |
18 | 17 | rspcv 3547 |
. . 3
⊢ (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = ∪ 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))) |
19 | 5, 11, 12, 18 | syl3c 66 |
. 2
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈) |
20 | | rexin 4170 |
. 2
⊢
(∃𝑣 ∈
(𝒫 𝐽 ∩
(LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |
21 | 19, 20 | sylib 217 |
1
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |