MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inss Structured version   Visualization version   GIF version

Theorem inss 4237
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 4236 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
2 incom 4200 . . 3 (𝐴𝐵) = (𝐵𝐴)
3 ssinss1 4236 . . 3 (𝐵𝐶 → (𝐵𝐴) ⊆ 𝐶)
42, 3eqsstrid 4029 . 2 (𝐵𝐶 → (𝐴𝐵) ⊆ 𝐶)
51, 4jaoi 853 1 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  cin 3946  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964
This theorem is referenced by:  pmatcoe1fsupp  22423  ppttop  22730  inindif  32021  disjorimxrn  37921  iunrelexp0  42755  ntrclsk3  43123  icccncfext  44901
  Copyright terms: Public domain W3C validator