Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inss | Structured version Visualization version GIF version |
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
Ref | Expression |
---|---|
inss | ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssinss1 4168 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
2 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
3 | ssinss1 4168 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 3965 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
5 | 1, 4 | jaoi 853 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: pmatcoe1fsupp 21758 ppttop 22065 inindif 30764 disjorimxrn 36783 iunrelexp0 41199 ntrclsk3 41569 icccncfext 43318 |
Copyright terms: Public domain | W3C validator |