MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inss Structured version   Visualization version   GIF version

Theorem inss 4207
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 4205 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
2 incom 4168 . . 3 (𝐴𝐵) = (𝐵𝐴)
3 ssinss1 4205 . . 3 (𝐵𝐶 → (𝐵𝐴) ⊆ 𝐶)
42, 3eqsstrid 3982 . 2 (𝐵𝐶 → (𝐴𝐵) ⊆ 𝐶)
51, 4jaoi 857 1 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  cin 3910  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-in 3918  df-ss 3928
This theorem is referenced by:  pmatcoe1fsupp  22564  ppttop  22870  disjorimxrn  38713  iunrelexp0  43664  ntrclsk3  44032  icccncfext  45858
  Copyright terms: Public domain W3C validator