MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inss Structured version   Visualization version   GIF version

Theorem inss 4172
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 4171 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
2 incom 4135 . . 3 (𝐴𝐵) = (𝐵𝐴)
3 ssinss1 4171 . . 3 (𝐵𝐶 → (𝐵𝐴) ⊆ 𝐶)
42, 3eqsstrid 3969 . 2 (𝐵𝐶 → (𝐴𝐵) ⊆ 𝐶)
51, 4jaoi 854 1 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  pmatcoe1fsupp  21850  ppttop  22157  inindif  30863  disjorimxrn  36856  iunrelexp0  41310  ntrclsk3  41680  icccncfext  43428
  Copyright terms: Public domain W3C validator