![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inss | Structured version Visualization version GIF version |
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
Ref | Expression |
---|---|
inss | ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssinss1 4267 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
2 | incom 4230 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
3 | ssinss1 4267 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 4057 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
5 | 1, 4 | jaoi 856 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: pmatcoe1fsupp 22728 ppttop 23035 inindif 32546 disjorimxrn 38704 iunrelexp0 43664 ntrclsk3 44032 icccncfext 45808 |
Copyright terms: Public domain | W3C validator |