MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inss Structured version   Visualization version   GIF version

Theorem inss 4268
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 4267 . 2 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
2 incom 4230 . . 3 (𝐴𝐵) = (𝐵𝐴)
3 ssinss1 4267 . . 3 (𝐵𝐶 → (𝐵𝐴) ⊆ 𝐶)
42, 3eqsstrid 4057 . 2 (𝐵𝐶 → (𝐴𝐵) ⊆ 𝐶)
51, 4jaoi 856 1 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  pmatcoe1fsupp  22728  ppttop  23035  inindif  32546  disjorimxrn  38704  iunrelexp0  43664  ntrclsk3  44032  icccncfext  45808
  Copyright terms: Public domain W3C validator