MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintn0 Structured version   Visualization version   GIF version

Theorem rintn0 5073
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
rintn0 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)

Proof of Theorem rintn0
StepHypRef Expression
1 intssuni2 4937 . . 3 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋 𝒫 𝐴)
2 ssid 3969 . . . 4 𝒫 𝐴 ⊆ 𝒫 𝐴
3 sspwuni 5064 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
42, 3mpbi 230 . . 3 𝒫 𝐴𝐴
51, 4sstrdi 3959 . 2 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋𝐴)
6 sseqin2 4186 . 2 ( 𝑋𝐴 ↔ (𝐴 𝑋) = 𝑋)
75, 6sylib 218 1 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   cint 4910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921  df-ss 3931  df-nul 4297  df-pw 4565  df-uni 4872  df-int 4911
This theorem is referenced by:  mrerintcl  17558  ismred2  17564
  Copyright terms: Public domain W3C validator