| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rintn0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| rintn0 | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intssuni2 4940 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
| 2 | ssid 3972 | . . . 4 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
| 3 | sspwuni 5067 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
| 5 | 1, 4 | sstrdi 3962 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ 𝐴) |
| 6 | sseqin2 4189 | . 2 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | |
| 7 | 5, 6 | sylib 218 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-uni 4875 df-int 4914 |
| This theorem is referenced by: mrerintcl 17565 ismred2 17571 |
| Copyright terms: Public domain | W3C validator |