![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
rintn0 | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni2 4722 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
2 | ssid 3848 | . . . 4 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
3 | sspwuni 4832 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
4 | 2, 3 | mpbi 222 | . . 3 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
5 | 1, 4 | syl6ss 3839 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ 𝐴) |
6 | sseqin2 4044 | . 2 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | |
7 | 5, 6 | sylib 210 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ≠ wne 2999 ∩ cin 3797 ⊆ wss 3798 ∅c0 4144 𝒫 cpw 4378 ∪ cuni 4658 ∩ cint 4697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-nul 4145 df-pw 4380 df-uni 4659 df-int 4698 |
This theorem is referenced by: mrerintcl 16610 ismred2 16616 |
Copyright terms: Public domain | W3C validator |