MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintn0 Structured version   Visualization version   GIF version

Theorem rintn0 5090
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
rintn0 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)

Proof of Theorem rintn0
StepHypRef Expression
1 intssuni2 4954 . . 3 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋 𝒫 𝐴)
2 ssid 3986 . . . 4 𝒫 𝐴 ⊆ 𝒫 𝐴
3 sspwuni 5081 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
42, 3mpbi 230 . . 3 𝒫 𝐴𝐴
51, 4sstrdi 3976 . 2 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋𝐴)
6 sseqin2 4203 . 2 ( 𝑋𝐴 ↔ (𝐴 𝑋) = 𝑋)
75, 6sylib 218 1 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2933  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4888   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948  df-nul 4314  df-pw 4582  df-uni 4889  df-int 4928
This theorem is referenced by:  mrerintcl  17614  ismred2  17620
  Copyright terms: Public domain W3C validator