MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rintn0 Structured version   Visualization version   GIF version

Theorem rintn0 4994
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
rintn0 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)

Proof of Theorem rintn0
StepHypRef Expression
1 intssuni2 4863 . . 3 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋 𝒫 𝐴)
2 ssid 3937 . . . 4 𝒫 𝐴 ⊆ 𝒫 𝐴
3 sspwuni 4985 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
42, 3mpbi 233 . . 3 𝒫 𝐴𝐴
51, 4sstrdi 3927 . 2 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → 𝑋𝐴)
6 sseqin2 4142 . 2 ( 𝑋𝐴 ↔ (𝐴 𝑋) = 𝑋)
75, 6sylib 221 1 ((𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wne 2987  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   cint 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-uni 4801  df-int 4839
This theorem is referenced by:  mrerintcl  16860  ismred2  16866
  Copyright terms: Public domain W3C validator