![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
rintn0 | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni2 4915 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
2 | ssid 3952 | . . . 4 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
3 | sspwuni 5040 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
5 | 1, 4 | sstrdi 3942 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ 𝐴) |
6 | sseqin2 4159 | . 2 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | |
7 | 5, 6 | sylib 217 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ≠ wne 2941 ∩ cin 3895 ⊆ wss 3896 ∅c0 4266 𝒫 cpw 4543 ∪ cuni 4848 ∩ cint 4890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-in 3903 df-ss 3913 df-nul 4267 df-pw 4545 df-uni 4849 df-int 4891 |
This theorem is referenced by: mrerintcl 17373 ismred2 17379 |
Copyright terms: Public domain | W3C validator |