![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rintn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
rintn0 | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni2 4978 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
2 | ssid 4018 | . . . 4 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
3 | sspwuni 5105 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
4 | 2, 3 | mpbi 230 | . . 3 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
5 | 1, 4 | sstrdi 4008 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑋 ⊆ 𝐴) |
6 | sseqin2 4231 | . 2 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | |
7 | 5, 6 | sylib 218 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2938 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-uni 4913 df-int 4952 |
This theorem is referenced by: mrerintcl 17642 ismred2 17648 |
Copyright terms: Public domain | W3C validator |